
IEEE	1904.2	UMT
Base	Architecture	and	Operation

Kevin	A.	Noll,	Tibit Communications

1

Key	Operational	Ideas

• Although	called	a	“tunnel”,	UMT	is	different	than	most	other	
tunneling	protocols

2

Typical	Tunnel

• Pre-defined	and	fixed	endpoints	(in	a	one-to-one	relationship)	for	
each	“tunnel”	or	“session”
• Applications	use	their	native	stack	and	the	tunnel	endpoint	
”captures”	traffic	that	is	to	be	tunneled

3

UMT	– Key	Operational	Ideas

• A	tunnel	in	UMT	does	not	need	to	have	fixed	and	pre-specified	
“tunnel	endpoints”
• In	UMT	the	application	uses	the	tunnel	directly
• Another	way	to	look	at	it	– UMT	appears	to	the	client	as	an	alternate	
MAC	layer

4

UMT	– Key	Operational	Ideas

• When	a	frame	enters	the	UMT	“tunnel”,	it	could	be	delivered	to	
{ONE|SEVERAL|ALL}	UMT	clients	in	a	given	Ethernet	broadcast	
domain.
• The	choice	of	{ONE|SEVERAL|ALL}	depends	on	the	DA	requested	by	
the	UMT	client.
• The	UMT	client	will	need	to	be	updated	with	this	in	mind.	For	
example,	if	IPv4	is	expected	to	operate	over	UMT,	ARP	might	need	to	
be	implemented	over	UMT	so	that	automatic	neighbor	discovery	
works.

5

Architecture	– Functional	Units

• UMT	Client	– There	are	two	client	functions
• UMT	Transmitting	Client	(UMT-TxC)	– Station	sending	management	
frames	(e.g.	OAM)
• UMT	Receiving	Client	(UMT-RxC)	– Station	receiving	management	
frames	(e.g.	OAM)
• There	may	be	only	one	or	both	client	functions	in	a	station
• There	may	be	more	than	one	instance	of	a	client	function	in	a	
station
• UMT-TxC and	UMT-RxC are	only	functional	entities	for	the	
description	of	protocol	operation.

6

Architecture	– Functional	Units

• UMT	Root	Node	(UMT-RN)	– Encapsulates	management	frames	
transmitted	by	UMT-TxC
• UMT	Leaf	Node	(UMT-LN)	– Decapsulates management	frames	
sent	by	UMT-RN	and	transmits	the	management	frame	to	the	
intended	UMT-RxC
• UMT-RN	and	UMT-LN	are	separate	because	there	could	be	a	few	to	many	
relationship	between	RN	and	LN	(e.g.	one	RN	and	many	LN)	and	it	is	
possible	that	only	a	receive	function	is	needed	in	a	given	node.

• Separation	helps	describe	the	needed	functions	in	the	standard.	
Implementation	can	be	different.

• UMT	Intermediate	Node	(UMT-IN)	– MAC-layer	bridge/switch	
forwards	UMT	frames	toward	UMT-LN	based	only	on	L2	
forwarding	rules	found	in	802.1D,	802.1Q,	and	related	standards

7

What	About	a	Real	System?

• UMT-TxC and	UMT-RxC are	the	software	that	want	
to	use	UMT,	e.g.	OAM
• Highly	probable	that	any	UMT-TxC will	also	be	an	
UMT-RxC and	vice	versa
• UMT-RN	and	UMT-LN	are	to	be	specified	as	a	
single	layer

8

What	about	a	real	system?

• UMT-TxC and	UMT-RxC are	most	likely	to	be	
co-located	on	a	host,	but	not	necessarily.

• UMT-TxC/RxC and	UMT-RN/LN	are	not	
required	to	be	co-located.

• The	implementation-specifics	of	the	interface	
between	the	UMT	Client	functions	and	the	
Root/Leaf	Node	functions	are	outside	the	
scope	of	1904.2.

9

Addressing

• UMT	frame	DA	MAY	be	a	unicast	address
• UMT	frame	DA	MAY	be	broadcast	address
• For	example	– To	enable	node/client	discovery

• UMT	frame	DA	MAY	be	a	multicast	address
• UMT	frame	Ethertype must	be	set	to	the	value	assigned	by	IEEE-SA
• UMT	frame	may	be	carried	within	a	VLAN	(informative	text	may	be	
added	to	describe	this,	but	specifics	are	out	of	scope)
• UMT	Payload	addressing	is	out	of	scope

10

UMT	Delivery	with	Unicast	DA

11

UMT	Delivery	with	Multicast	DA

12

UMT	Delivery	with	Broadcast	DA

13

Proposed	Protocol	Stack	for	1904.2

14

1904.2	Sublayer	with	Signals

15

1904.2	Sublayer	Internals

16

1904.2	UMT	Sublayer	Operational	Principles

• Receipt	of	MCF:MA_DATA.request
• results	in	a	call	to	MAC:MA_DATA.request with	parameters	identical	to	
MCF:MA_DATA.request

• Receipt	of	MAC:MA_DATA.indication
• UMT	Parser	looks	at	EtherType
• If	EtherType =	UMT	and	SubType matches	a	UMT	Client,	results	in	a	call	to	
UMTPDU.indication to	the	UMT	Client	identified	by	the	SubType
• If	EtherType !=	UMT,	results	in	a	call	to	MCF:DATA.indication with	parameters	
identical	to	MAC:MA_DATA.indication.

17

1904.2	UMT	Sublayer	Operational	Principles

• Receipt	of	UMTPDU.request
• results	in	a	call	to	MAC:MA_DATA.request with	parameters	to	transmit	a	
UMTPDU	containing	the	UMT	Client’s	data.	

• Call	to	UMTPDU.indication
• Occurs	upon	receipt	of	MAC:MA_DATA.indication and	EtherType =	UMT

18

1904.2	UMT	Sublayer	Function	Definitions

• MCF:MA_DATA.request – Received	from	the	superior	MAC	Client
• (destination_address,	source_address,	mac_service_data_unit,	
frame_check_sequence)

• MCF:MA_DATA.indication – Sent	to	the	superior	MAC	Client
• (destination_address,	source_address,	mac_service_data_unit,	
frame_check_sequence,	reception_status)

19

1904.2	UMT	Sublayer	Function	Definitions

• MAC:MA_DATA.request – Sent	to	MAC	Sublayer
• (destination_address,	source_address,	mac_service_data_unit,	
frame_check_sequence)

• MAC:MA_DATA.indication – Received	from	MAC	Sublayer
• (destination_address,	source_address,	mac_service_data_unit,	
frame_check_sequence,	reception_status)

20

1904.2	UMT	Sublayer	Function	Definitions

• UMTPDU.request – Received	from	UMT	Client	acting	as	a	UMT-TxC
• (destination_address,	source_address,	umt_data)

• UMTPDU.indication – Sent	to	UMT	Client	acting	as	a	UMT-RxC
• (destination_address,	source_address,	umt_data)

21

Architecture	– Basic	Flow	1/2
1. UMT-TxC constructs	a	PDU	per	its	own	

standards/specifications.	This	becomes	the	UMT	
Payload

2. UMT-TxC sends	UMT	Payload	to	UMT	Sublayer	
using	UMTPDU.request

3. UMT	Sublayer	encapsulates	the	UMT	Payload	–
creating	the	UMTPDU

4. UMT	Sublayer	delivers	UMTPDU	to	the	MAC	Layer	
for	delivery	using	MAC:MA_DATA.request
1. DA	is	set	to	the	intended	recipient	(UMT-RxC),	SA	is	

set	to	UMT-RN

22

Architecture	– Basic	Flow	2/2

6. UMT-IN	(if	present)	forwards	UMTPDU	toward	
UMT-LN

7. UMT-LN	MAC	Layer	receives	frame

8. MAC	Layer	delivers	frame	to	UMT	Sublayer	
using	MAC:MA_DATA.indication

9. UMT	Sublayer	decapsulates UMT	payload	
10. UMT	Sublayer	forwards	UMT	payload	to	UMT-

RxC using	UMTPDU.indication

11. UMT-RxC receives	UMT	payload

23

Thanks!

Q&A

24

