
Page | 1
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Annex B UMT Peer Discovery and Tunnel Auto-Configuration 1

B.1 Introduction 2

IEEE Std. 1904.2 Clause 4 defines a method for delivering service data units (SDU) for higher layer 3
protocols across a layer-2 network in which those protocols would not normally be forwarded due to 4
addressing conflicts or other factors. The described architecture consists of UMT peers that perform 5
appropriate encapsulation of the UMT Client SDUs into UMTPDUs which are transmitted across a layer-2 6
network and received, decapsulated and the resulting UMT Client SDUs delivered to the desired UMT 7
Client. 8

IEEE Std. 1904.2 requires that a UMT Peer be configured to know of the presence and functionality of 9
another UMT Peer before they are able to transfer UMTPDUs between one another. IEEE Std. 1904.2 10
Clause 4, however, does not specify a method for automatically discovering the presence and capabilities of 11
UMT Peers on a network. 12

This annex defines an architecture and system for automatic UMT Peer Discovery and for automatically 13
configuring unicast tunnels between peers. 14

This annex is normative. Implementation of this annex is optional. 15

B.2 Overview of UMT Peer Discovery Protocol 16

Figure B-1 depicts the topology of a network over which a set of UMT peers wish to discover one another 17
for the purpose of transferring UMTPDUs. 18

 19

Figure B-1 - Topology of UMT Peer Discovery 20

In this generalized topology, a UMT peer wishes to discover and communicate with another UMT peer that 21
is located one or more MAC Relay hops away. IEEE Std. 1904.2 Clause 4 allows multicast and broadcast 22
operation for UMT. UMT Peer Discovery uses UMT broadcast operation to advertise the presence of a 23
UMT peer and solicit neighboring UMT peers to respond to that advertisement to alert the UMT peer of 24
their individual presence. 25

The UMT Peer Discovery function is, in fact, a UMT Client that uses the UMT Peer Maintenance UMT 26
Subtype, referred to as a UMT Maintenance Service Data Unit (UMTMSDU), over a broadcast UMT 27
tunnel adapter. A UMT Peer Discovery entity can be configured in Active mode or in Passive mode. 28

Page | 2
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

The packet flow of UMT Peer Discovery is shown in Figure B-2 1

 2
Figure B-2 – Packet Flow for UMT Peer Discovery 3

Periodically, a UMT Peer Discovery entity in Active mode forms a UMTPDU and transmits it as a MAC 4
broadcast. The broadcast UMTPDU solicits neighboring UMT Peer Discovery entities (Active or Passive) 5
to respond to the sending UMT Peer Discovery entity. 6

Upon receipt of the UMT Peer Discovery solicitation message, the receiving UMT Peer Discovery entity 7
will, if local policy permits, form a UMTPDU and send it as a MAC unicast to the soliciting peer. This 8
solicitation/response action allows the Active UMT Peer Discovery entity to build a table of neighboring 9
UMT Peers and the capabilities of each. 10

The packet flow for automatic UMT tunnel configuration is show in Figure B-3. 11

Page | 3
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1
Figure B-3 - Packet Flow for UMT Tunnel Automatic Configuration 2

After the UMT Peers have discovered one another through manual configuration or through UMT Peer 3
Discovery, a tunnel can be established automatically by the peers. A UMT tunnel is initiated when a UMT 4
Peer entity sends a unicast message to another peer requesting that a tunnel adapter be created. The remote 5
peer, if local policy permits, responds to indicate that the UMT peer is able and willing to create the tunnel 6
adapter. That peer waits for the requesting peer to complete the tunnel configuration by sending an 7
acknowledgement. In this exchange of configuration messages, the two UMT peers also send and negotiate 8
tunnel parameters (for example, supported UMT Client protocols). 9

B.3 Functional Specifications 10

B.3.1 UMT Peer Discovery and Tunnel Auto-Configuration Service Interfaces 11

Figure B-4 depicts the usage of interlayer interfaces by the Discovery and Auto-Configuration processes in 12
the UMT Peer Maintenance entity. 13

Page | 4
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1
Figure B-4 – UMT Discovery and Auto-Configuration service interfaces 2

B.3.2 Principles of Operation 3

UMT Peer Discovery employs the following principles and concepts: 4

a) Only an active UMT Peer Discovery entity may send unsolicited peer discovery messages. 5

b) A passive UMT Peer Discovery entity must remain silent unless it receives a solicitiation from an 6
active peer. 7

c) Automatic UMT Peer Discovery is only responsible for building a database of neighboring UMT 8
peers. 9

UMT Tunnel Auto-Configuration employs the following principles and concepts: 10

a) UMT Tunnel Auto-Configuration is not dependent upon automatic UMT Peer Discovery. 11
Neighboring UMT peers may be configured manually by an administrator. 12

b) Any peer in the UMT network can initiate a tunnel configuration. 13

c) Since UMT tunnels are stateless, UMT Tunnel Auto-Configuration is not a method for 14
establishing a tunnel. UMT Tunnel Auto-configuration is a method for requesting that a 15
neighboring UMT peer create a Tunnel Adapter. 16

B.3.3 UMT Peer Maintenance 17

The UMT Peer Maintenance entity is a multi-functional and extensible entity. In the context of this annex, 18
the UMT Peer Maintenance entity is the context in which UMT Peer Discovery and UMT Tunnel Auto-19
Configuration is defined. 20

Page | 5
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

B.3.3.1 UMT Peer Maintenance Interactions 1

B.3.3.1.1 Interlayer Interactions 2

All processes and functions within the UMT Peer Maintenance entity communicate with lower UMT layers 3
using the following interlayer service interfaces: 4

UMTCLT.request 5

UMTCLT.indication 6

The UMTCLT.request and UMTCLT.indication service primitives are described in IEEE Std. 1904.2 7
Clause 4. 8

B.3.3.1.2 Intralayer Interactions 9

The UMT Peer Maintenance entity contains an abstract control process that communicates with the Auto-10
Configuration function using the following service interfaces: 11

UMTAC.request 12

The UMTAC.request service primitive described in this subclause is mandatory if the Auto-Configuration 13
function is implemented. 14

B.3.3.1.2.1 UMTAC.request 15

This primitive triggers the Auto-Configuration function to initiate a request to create or delete a tunnel on a 16
UMT Peer. 17

B.3.3.1.2.1.1 Function 18

The semantics of the primitive are as follows: 19

UMTAC. request (20
action, 21
tunnel_adapter_descriptor 22
) 23

The action parameter indicates the action to be taken – create or delete. The tunnel_adapter_descriptor 24
parameter specifies the tunnel adapter to be created on or deleted from the UMT Peer. 25

B.3.3.2 Use of UMT Tunnel Adapters 26

As shown in Figure B-4, the Active Peer Discovery process, the Passive Peer Discovery process and the 27
Auto-Configuration process are all clients to the UMT layers. Therefore, it is necessary for them to interact 28
with one or more UMT Tunnel Adapters to enable them to operate. 29

B.3.3.3 Active Peer Discovery Tunnel Adapter 30

The Active Peer Discovery Tunnel adapter is used by the Active Peer Discovery process to send SOLICIT 31
messages via MAC broadcast and to receive HELLO messages via MAC unicast from any possible MAC 32
source address. The Active Peer Discovery Tunnel Adapter is defined by the tuple: 33

(34
Indicated DA = <Local UMT Peer MAC Address> (DA of UMTPDU.indication) 35

Page | 6
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Indicated SA = <any> (SA of UMTPDU.indication) 1
Requested DA = MAC Broadcast (DA of UMTPDU.request) 2
Requested SA = <Local UMT Peer MAC Address> (SA of UMTPDU.request) 3
Transmission Method = Broadcast 4
) 5

The Active Peer Discovery Tunnel Adapter shall be configured prior to or during initialization of the 6
Active Peer Discovery process. 7

Editor’s Note: The tuple above is intended to represent a “filter” definition of the Tunnel Adapter. 8
Requested DA corresponds to the destination_address parameter of UMTPDU.request primitive. Requested 9
SA corresponds to the source_address parameter of the UMTPDU.request primitive. Indicated_DA and 10
Indicated_SA correspond to the destination_address and source_address parameters (respectively) of the 11
UMTPDU.indication primitive. 12

B.3.3.4 Passive Peer Discovery Receive Tunnel Adapter 13

The Passive Peer Discovery Receive Tunnel Adapter is used by the Passive Peer Discovery process to 14
receive SOLICIT messages via MAC broadcast from any possible MAC source address. It shall not be used 15
to transmit messages. The Passive Peer Discovery Receive Tunnel Adapter is a receive-only tunnel adapter. 16
The Passive Peer Discovery Receive Tunnel Adapter is defined by the tuple: 17

(18
Indicated DA = MAC Broadcast (DA of UMTPDU.indication) 19
Indicated SA = <any> (SA of UMTPDU.indication) 20
Requested DA = <N/A> (DA of UMTPDU.request) 21
Requested SA = <N/A> (SA of UMTPDU.request) 22
Transmission Method = Receive Only 23
) 24

The Passive Peer Discovery Receive Tunnel Adapter shall be configured prior to or during initialization of 25
the Passive Peer Discovery process. 26

B.3.3.5 Passive Peer Discovery Transmit Tunnel Adapter 27

The Passive Peer Discovery Transmit Tunnel Adapter is a transient entity that is used by the Passive Peer 28
Discovery process to transmit HELLO messages via unicast to the UMT peer from which a SOLICIT is 29
received. It shall not be used to receive messages. The Passive Peer Discovery Transmit Tunnel Adapter is 30
a transmit-only tunnel adapter. The Passive Peer Discovery Transmit Tunnel Adapter is defined by the 31
tuple: 32

(33
Indicated DA = <N/A> (DA of UMTPDU.indication) 34
Indicated SA = <N/A> (SA of UMTPDU.indication) 35
Requested DA = <Remote UMT Peer MAC Address> (DA of UMTPDU.request) 36
Requested SA = <Local UMT Peer MAC Address> (SA of UMTPDU.request) 37
Transmission Method = Unicast 38
) 39

The Passive Peer Discovery Transmit Tunnel Adapter shall be configured immediately prior to sending a 40
HELLO message and shall be deleted immediately after transmitting the HELLO message. 41

Page | 7
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

B.3.3.6 AutoConfig Tunnel Adapter 1

The AutoConfig Tunnel adapter is used by the Passive Peer Discovery process to send HELLO messages in 2
response to SOLICIT messages. The AutoConfig Tunnel Adapater is also used by the Auto-Configuration 3
process to exchange configuration messages via MAC unicast between two UMT peers. The Auto-4
Configuration process requires multiple AutoConfig Tunnel adapters. A unique AutoConfig Tunnel adapter 5
is required for each UMT peer wishing to participate in the Auto-Configuration process. The AutoConfig 6
Tunnel Adapter is defined by the tuple: 7

(8
Indicated DA = <Local UMT Peer MAC Address> 9
Indicated SA = <Remote UMT Peer MAC Address> 10
Requested DA = <Remote UMT Peer MAC Address> 11
Requested SA = <Local UMT Peer MAC Address> 12
Transmission Method = Unicast 13
) 14

The AutoConfig Tunnel Adapter shall be configured prior to or during initialization of the Auto-15
Configuration process. 16

B.4 Detailed functions and state diagrams 17

B.4.1 State diagram variables 18

B.4.1.1 Constants 19

UMTM_Subtype 20
The value of the UMT Subtype field for UMT Maintenance SDUs (See Table 4-2). 21

ta_unicast_mode 22
The value of the Tunnel Adapter Transmission Method that indicates unicast transmission mode. 23
(See B.5.3.4.1) 24

ta_rxonly_mode 25
The value of the Tunnel Adapter Transmission Method that indicates receive-only transmission 26
mode. (See B.5.3.4.1) 27

NULL 28
This constant is used to indicate that no value is assigned or an empty value is assigned. 29

B.4.1.2 Variables 30

BEGIN 31
A variable that resets the functions within a UMT Peer Maintenance process. 32
Values: TRUE; when any of the component UMT sublayers is reset. 33

FALSE; When (re-)initialization has completed. 34
 35
req_umt_subtype 36

The value of the umt_subtype parameter passed to the UMT Client in the UMTCLT.request 37
primitive. 38
Value: Integer (See Table 4-2) 39

req_umtm_message_type 40

Page | 8
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

The value of the UMTM Message Type field in a requested UMT Peer Maintenance SDU and 1
passed to the UMT Tunnel Adapter via the UMTCLT.request primitive as part of the 2
req_umt_client_sdu parameter. 3
Values: See Table B-1 4

 5
req_revision 6

The value of the Revision field in a requested UMT Peer Maintenance SDU and passed to the 7
UMT Tunnel Adapter via the UMTCLT.request primitive as part of the req_umt_client_sdu 8
parameter. 9
Values: See B.5.1 10

 11
req_sequence_number 12

The value of the Sequence Number field in a requested UMT Peer Maintenance SDU and passed 13
to the UMT Tunnel Adapter via the UMTCLT.request primitive as part of the req_umt_client_sdu 14
parameter. 15
Values: See B.5.1 16

 17
req_supported_umt_subtypes_tlv 18

The value of the Supported UMT Subtypes TLV in a requested UMT Peer Maintenance SDU and 19
passed to the UMT Tunnel Adapter via the UMTCLT.request primitive as part of the 20
req_umt_client_sdu parameter. 21
Values: See B.5.3.1 22

 23
req_requested_umt_subtypes_tlv 24

The value of the Requested UMT Subtypes TLV in a requested UMT Peer Maintenance SDU and 25
passed to the UMT Tunnel Adapter via the UMTCLT.request primitive as part of the 26
req_umt_client_sdu parameter. 27
Values: See B.5.3.2 28

 29
req_umt_peer_identifier_tlv 30

The value of the UMT Peer Identifier TLV in a requested UMT Peer Maintenance SDU and 31
passed to the UMT Tunnel Adapter via the UMTCLT.request primitive as part of the 32
req_umt_client_sdu parameter. 33
Values: See B.5.3.5 34

 35
req_transaction_id_tlv 36

The value of the Transaction Identifier TLV in a requested UMT Peer Maintenance SDU and 37
passed to the UMT Tunnel Adapter via the UMTCLT.request primitive as part of the 38
req_umt_client_sdu parameter. 39
Values: See B.5.3.3 40

 41
req_tunnel_adapter_descriptor_tlv 42

The value of the Tunnel Adapter Descriptor TLV in a requested UMT Peer Maintenance SDU and 43
passed to the UMT Tunnel Adapter via the UMTCLT.request primitive as part of the 44
req_umt_client_sdu parameter. 45
Values: See B.5.3.4 46

 47
req_reason_code 48

The value of the Reason Code TLV in a requested UMT Peer Maintenance SDU and passed to the 49
UMT Tunnel Adapter via the UMTCLT.request primitive as part of the req_umt_client_sdu 50
parameter. 51
Values: See B.5.3.6 52

 53
req_umt_client_sdu 54

The value of the umt_client_sdu parameter passed to the UMT Tunnel Adapter in the 55
UMTCLT.request primitive. 56

Page | 9
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

ind_SA 1
The value of the source address parameter received in a UMTCLT.indication primitive. 2

 3
ind_DA 4

The value of the destination address parameter received in a UMTCLT.indication primitive. 5
 6
ind_umt_subtype 7

The value of the Subtype field in a received UMT protocol frame (see Table 4-2) and is used to 8
determine the UMT Client to which the UMT payload is destined. 9
Value: Integer (See Table 4-2) 10

 11
ind_umtm_message_type 12

The value of the UMTM Message Type field in a received UMT Peer Maintenance SDU and 13
passed to the UMT Peer Maintenance entity via the UMTCLT.indication primitive as part of the 14
ind_umt_client_sdu parameter. 15
Values: See Table B-1 16

 17
ind_revision 18

The value of the Revision field in a received UMT Peer Maintenance SDU and passed to the UMT 19
Peer Maintenance entity via the UMTCLT.indication primitive as part of the ind_umt_client_sdu 20
parameter. 21
Values: See B.5.1 22

 23
ind_sequence_number 24

The value of the Sequence Number field in a received UMT Peer Maintenance SDU and passed to 25
the UMT Peer Maintenance entity via the UMTCLT.indication primitive as part of the 26
ind_umt_client_sdu parameter. 27
Values: See B.5.1 28

 29
ind_supported_umt_subtypes_tlv 30

The value of the Supported UMT Subtypes TLV in a received UMT Peer Maintenance SDU and 31
passed to the UMT Peer Maintenance entity via the UMTCLT.indication primitive as part of the 32
ind_umt_client_sdu parameter. 33
Values: See B.5.3.1 34

 35
ind_requested_umt_subtypes_tlv 36

The value of the Requested UMT Subtypes TLV in a received UMT Peer Maintenance SDU and 37
passed to the UMT Peer Maintenance entity via the UMTCLT.indication primitive as part of the 38
ind_umt_client_sdu parameter. 39
Values: See B.5.3.2 40

 41
ind_umt_peer_identifier_tlv 42

The value of the UMT Peer Identifier TLV in a received UMT Peer Maintenance SDU and passed 43
to the UMT Peer Maintenance entity via the UMTCLT.request primitive as part of the 44
ind_umt_client_sdu parameter. 45
Values: See B.5.3.5 46

 47
ind_transaction_id_tlv 48

The value of the Transaction Identifier TLV in a received UMT Peer Maintenance SDU and 49
passed to the UMT Peer Maintenance entity via the UMTCLT.request primitive as part of the 50
ind_umt_client_sdu parameter. 51
Values: See B.5.3.3 52

 53
ind_tunnel_adapter_descriptor_tlv 54

Page | 10
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

The value of the Tunnel Adapter Descriptor TLV in a received UMT Peer Maintenance SDU and 1
passed to the UMT Peer Maintenance entity via the UMTCLT.request primitive as part of the 2
ind_umt_client_sdu parameter. 3
Values: See B.5.3.4 4

 5
ind_reason_code 6

The value of the Reason Code TLV in a received UMT Peer Maintenance SDU and passed to the 7
UMT Peer Maintenance entity via the UMTCLT.request primitive as part of the 8
ind_umt_client_sdu parameter. 9
Values: See B.5.3.6 10

 11
ind_umt_client_sdu 12

The value of the Data field in a received UMT protocol frame and is passed to the UMT Peer 13
Maintenance entity in the umt_client_sdu paremeter of the UMTPDU.indication primitive. 14

req_action 15
req_tunnel_adapter_descriptor 16

The parameters of the UMTAC.request service primitive as defined in B.3.3.1.2.1 17
 18
req_umtm_data 19

The fields contained in a UMT Peer Maintenance SDU and passed to the UMT Tunnel Adapter in 20
the UMTCLT.request service primitive. 21

req_action_create 22
The action parameter of UMTAC.request, as defined in B.3.3.1.2.1, with a value indicating a 23
create action. 24

req_action_delete 25
The action parameter of UMTAC.request, as defined in B.3.3.1.2.1, with a value indicating a 26
delete action. 27

req_tunnel_adapter_descriptor 28
The value of the tunnel_adapter_descriptor parameter of the UMTAC.request service primitive, as 29
defined in B.3.3.1.2.1. 30

max_retries 31
This variable defines the maximum number of times a UMT Peer Maintenance process will send a 32
duplicate message in an attempt to communicate with a peer entity. 33

param_list 34
cfg_req 35

The values returned from the check_cfg_request function. 36

del_req 37
The value returned from the check_del_request function. 38

tunnel_descriptor 39
This variable represents the parameters that define a tunnel adapter on a UMT peer. The 40
parameters required to define a tunnel adapter are specified by the Tunnel Adapter Descriptor 41
TLV defined in B.5.3.4. Those paramters are represented in the state diagrams as: 42
 43
ta_indicated_da: Tunnel Adapter Indicated Destination Address Subtype (See B.5.3.4.3) 44
ta_ indicated _sa: Tunnel Adapter Indicated Source Address Subtype (See B.5.3.4.2) 45
ta_requested_da: Tunnel Adapter Requested Destination Address Subtype (See B.5.3.4.5) 46
ta_requested_sa: Tunnel Adapter Requested Source Address Subtype (See B.5.3.4.4) 47
ta_tx_method: Tunnel Adapter Transmission Method Subtype (See B.5.3.4.1) 48

Page | 11
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1
requested_umt_subtypes 2

This variable represents the value contained in the Requested UMT Subtypes TLV (See B.5.3.2) 3
 4
indicated_umt_mac_address 5

The MAC address of the local UMT peer. 6

B.4.1.3 Counters 7

retry_counter 8
A counter used to limit the number of duplicate UMT Maintenance SDUs sent during a Peer 9
Discovery or Auto-Configuration negotiation. 10

B.4.1.4 Timers 11

discovery_tx_timer 12
Timer used to regulate the frequency that peer discovery SOLICIT messages are sent. 13

retry_timer 14
Timer used to regulate the frequency that auto-configuration SDUs are sent when no response is 15
received to a corresponding request. 16

B.4.1.5 Functions 17

save_peer_info(source_address, umt_client_sdu) 18

This function parses received SOLICIT and HELLO messages and saves the received data for use 19
by other processes in the UMT Maintenance entity (e.g. Auto-Configuration). This function 20
requires as its arguments, the source address parameter and a UMT Client Service Data Unit as 21
received via the UMTCLT.indication primitive. 22

create_tunnel_adapter(tunnel_descriptor, requested_umt_subtypes) 23

This function creates a UMT Tunnel Adapter on the local UMT peer, if it does not already exist, 24
and makes the tunnel accessible by the UMT clients indicated by the requested_umt_subtypes 25
parameter. The function requires a tunnel descriptor and list of UMT Subtypes (see Table 4-2) as 26
its arguments. 27

delete_tunnel_adapter(tunnel_descriptor, requested_umt_subtypes) 28

This function removes access to the tunnel adapter indicated by tunnel_descriptor for the UMT 29
clients indicated by requested_umt_subtypes and deletes the tunnel adapter from the local UMT 30
peer if there are no remaining clients. The function requires a tunnel descriptor and list of UMT 31
Subtypes (see Table 4-2) as its arguments. 32

(cfg_req, param_list) Ü check_cfg_request(umt_client_sdu) 33

This function parses received CONFIG-REQ messages and returns a value, in the cfg_req variable, 34
indicating the status of the CONFIG-REQ. This function requires as its only argument, a UMT 35
Client Service Data Unit as received via the UMTCLT.indication primitive. A return value of 36
ACK indicates that the request is acceptable. A return value of REJ indicates that the request 37
contains unacceptable fields or TLVs. A return value of NAK indicates that the request contains 38
acceptable fields and TLVs but the value of of one or more of the fields or TLVs is unacceptable. 39
If this function returns NAK, it will also return a list of the fields, in the param_list variable, and 40
TLVs containing unacceptable values along with values for each that are acceptable to the local 41

Page | 12
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

peer and a reason code to indicate the reason the request is unacceptable. If this function returns 1
REJ, it will also return a list of the unacceptable fields and TLVs along with values for each that 2
are acceptable to the local peer and a reason code to indicate the reason the request is unacceptable. 3

del_req Ü check_del_request(umt_client_sdu) 4

This function parses received DELETE-REQ messages and returns a value, in the del_req variable, 5
indicating the status of the DELETE-REQ. A return value of ACK indicates that the request is 6
acceptable. This function requires as its only argument, a UMT Client Service Data Unit as 7
received via the UMTCLT.indication primitive. A return value of REJ indicates that the message 8
contains unacceptable fields or TLVs. A return value of NAK indicates that the message contains 9
acceptable fields and TLVs but the value of one or more of the fields or TLVs is unacceptable. If 10
this function returns NAK, it will also return a reason code to indicate the reason the request is 11
unacceptable. If this function returns REJ, it will also return a reason code to indicate the reason 12
the request is unacceptable. This function shall not return a list of unacceptable or acceptable 13
fields, TLVs or values. 14

valueof(tlv) 15

This function returns the value contained in a TLV. 16

B.4.1.6 Messages 17

UMTCLTREQ_SOLICIT 18
Alias for the request for a peer discovery SOLICIT message to be sent via the UMTCLT.request 19
primitive. The requested SOLICIT message contains the following fields, parameters and values: 20

req_umt_subtype 21
req_umtm_message_type Ü SOLICIT (see Table B-1) 22
req_revision 23
req_sequence_number 24
req_supported_umt_subtypes_tlv 25
req_umt_peer_identifier_tlv 26

 27
UMTCLTIND_HELLO 28

Alias for the receipt of a peer discovery HELLO message via the UMTCLT.indication primitive. 29
The received HELLO message contains the following fields, parameters and values: 30

ind_umt_subtype 31
ind_umtm_message_type Ü HELLO (see Table B-1) 32
ind_revision 33
ind_sequence_number 34
ind_supported_umt_subtypes_tlv 35
ind_umt_peer_identifier_tlv 36

 37
UMTCLTIND_SOLICIT 38

Alias for the receipt of a peer discovery SOLICIT message via the UMTCLT.indication primitive. 39
The received SOLICIT message contains the following fields, parameters and values: 40

ind_umt_subtype 41
ind_umtm_message_type Ü SOLICIT (see Table B-1) 42
ind_revision 43
ind_sequence_number 44
ind_supported_umt_subtypes_tlv 45
ind_umt_peer_identifier_tlv 46

Page | 13
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1
UMTCLTREQ_HELLO 2

Alias for the request for a peer discovery HELLO message to be sent via the UMTCLT.request 3
primitive. The requested HELLO message contains the following fields, parameters and values: 4

req_umt_subtype 5
req_umtm_message_type Ü HELLO (see Table B-1) 6
req_revision 7
req_sequence_number 8
req_supported_umt_subtypes_tlv 9
req_umt_peer_identifier_tlv 10

 11
UMTAC_CREATE 12

Alias for UMTAC.request(req_action, req_tunnel_adapter_descriptor), where req_action contains 13
the value indicating a create action. 14

UMTAC_DELETE 15
Alias for UMTAC.request(req_action, req_tunnel_adapter_descriptor), where req_action contains 16
the value indicating a delete action. 17

UMTCLTREQ_CFGREQ 18
Alias for the request for a Auto-Configuration CONFIG-REQ message to be sent via the 19
UMTCLT.request primitive. The requested CONFIG-REQ message contains the following fields, 20
parameters and values: 21

req_umt_subtype 22
req_umtm_message_type Ü CONFIG-REQ (see Table B-1) 23
req_revision 24
req_sequence_number 25
req_transaction_id_tlv 26
req_umt_peer_identifier_tlv 27
req_requested_umt_subtypes_tlv 28
req_tunnel_adapter_descriptor_tlv 29

 30
RX_CFGNAK 31

Alias for the receipt of an Auto-Configuration CONFIG-NAK message via the 32
UMTCLT.indication primitive. The received CONFIG-NAK message contains the following 33
fields, parameters and values: 34

ind_umt_subtype 35
ind_umtm_message_type Ü CONFIG-NAK (see Table B-1) 36
ind_revision 37
ind_sequence_number 38
ind_transaction_id_tlv 39
ind_umt_peer_identifier_tlv 40
ind_requested_umt_subtypes_tlv (optional per B.4.3.2.4) 41
ind_tunnel_adapter_descriptor_tlv (optional per B.4.3.2.4) 42
ind_reason_code 43

 44

Page | 14
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

RX_CFGREJ 1
Alias for the receipt of an Auto-Configuration CONFIG-REJ message via the 2
UMTCLT.indication primitive. The received CONFIG-REJ message contains the following fields, 3
parameters and values: 4

ind_umt_subtype 5
ind_umtm_message_type Ü CONFIG-REJ (see Table B-1) 6
ind_revision 7
ind_sequence_number 8
ind_transaction_id_tlv 9
ind_umt_peer_identifier_tlv 10
ind_requested_umt_subtypes_tlv (optional per B.4.3.2.5) 11
ind_tunnel_adapter_descriptor_tlv (optional per B.4.3.2.5) 12
ind_reason_code 13

 14
RX_CFGRSP 15

Alias for the receipt of an Auto-Configuration CONFIG-RSP message via the 16
UMTCLT.indication primitive. The received CONFIG-RSP message contains the following fields, 17
parameters and values: 18

ind_umt_subtype 19
ind_umtm_message_type Ü CONFIG-RSP (see Table B-1) 20
ind_revision 21
ind_sequence_number 22
ind_transaction_id_tlv 23
ind_umt_peer_identifier_tlv 24
ind_requested_umt_subtypes_tlv 25
ind_tunnel_adapter_descriptor_tlv 26

 27
UMTCLTREQ_CFGACK 28

Alias for the request for a Auto-Configuration CONFIG-ACK message to be sent via the 29
UMTCLT.request primitive. The requested CONFIG-ACK message contains the following fields, 30
parameters and values: 31

req_umt_subtype 32
req_umtm_message_type Ü CONFIG-ACK (see Table B-1) 33
req_revision 34
req_sequence_number 35
req_transaction_id_tlv 36
req_umt_peer_identifier_tlv 37
req_requested_umt_subtypes_tlv 38
req_tunnel_adapter_descriptor_tlv 39

 40

Page | 15
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

UMTCLTIND_CFGREQ 1
Alias for the receipt of a Auto-Configuration CONFIG-REQ message via the UMTCLT.indication 2
primitive. The received CONFIG-REQ message contains the following fields, parameters and 3
values: 4

ind_umt_subtype 5
ind _umtm_message_type Ü CONFIG-REQ (see Table B-1) 6
ind _revision 7
ind _sequence_number 8
ind _transaction_id_tlv 9
ind _umt_peer_identifier_tlv 10
ind _requested_umt_subtypes_tlv 11
ind _tunnel_adapter_descriptor_tlv 12

 13
UMTCLTREQ_CFGRSP 14

Alias for the request for a Auto-Configuration CONFIG-RSP message to be sent via the 15
UMTCLT.request primitive. The requested CONFIG-RSP message contains the following fields, 16
parameters and values: 17

req_umt_subtype 18
req_umtm_message_type Ü CONFIG-RSP (see Table B-1) 19
req_revision 20
req_sequence_number 21
req_transaction_id_tlv 22
req_umt_peer_identifier_tlv 23
req_requested_umt_subtypes_tlv 24
req_tunnel_adapter_descriptor_tlv 25
 26

UMTCLTREQ_CFGNAK 27
Alias for the request for a Auto-Configuration CONFIG-NAK message to be sent via the 28
UMTCLT.request primitive. The requested CONFIG-NAK message contains the following fields, 29
parameters and values: 30

req_umt_subtype 31
req_umtm_message_type Ü CONFIG-NAK (see Table B-1) 32
req_revision 33
req_sequence_number 34
req_transaction_id_tlv 35
req_umt_peer_identifier_tlv 36
param_list 37
req_reason_code 38

 39
UMTCLTREQ_CFGREJ 40

Alias for the request for a Auto-Configuration CONFIG-REJ message to be sent via the 41
UMTCLT.request primitive. The requested CONFIG-REJ message contains the following fields, 42
parameters and values: 43

req_umt_subtype 44
req_umtm_message_type Ü CONFIG-REJ (see Table B-1) 45
req_revision 46
req_sequence_number 47
req_transaction_id_tlv 48
req_umt_peer_identifier_tlv 49
param_list 50
req_reason_code 51

Page | 16
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1
UMTCLTIND_CFGACK 2

Alias for the receipt of a Auto-Configuration CONFIG-ACK message via the UMTCLT.indication 3
primitive. The received CONFIG-ACK message contains the following fields, parameters and 4
values: 5

ind_umt_subtype 6
ind _umtm_message_type Ü CONFIG-ACK (see Table B-1) 7
ind _revision 8
ind _sequence_number 9
ind _transaction_id_tlv 10
ind _umt_peer_identifier_tlv 11
ind _requested_umt_subtypes_tlv 12
ind _tunnel_adapter_descriptor_tlv 13

 14
UMTCLTREQ_DELREQ 15

Alias for the request for a Auto-Configuration DELETE-REQ message to be sent via the 16
UMTCLT.request primitive. The requested DELETE-REQ message contains the following fields, 17
parameters and values: 18

req_umt_subtype 19
req_umtm_message_type Ü DELETE-REQ (see Table B-1) 20
req_revision 21
req_sequence_number 22
req_transaction_id_tlv 23
req_umt_peer_identifier_tlv 24
req_requested_umt_subtypes_tlv 25
req_tunnel_adapter_descriptor_tlv 26

 27
RX_DELREJ 28

Alias for the receipt of an Auto-Configuration DELETE-REJ message via the 29
UMTCLT.indication primitive. The received DELETE-REJ message contains the following fields, 30
parameters and values: 31

ind_umt_subtype 32
ind_umtm_message_type Ü DELETE-REJ (see Table B-1) 33
ind_revision 34
ind_sequence_number 35
ind_transaction_id_tlv 36
ind_umt_peer_identifier_tlv 37
ind_reason_code 38

 39
RX_DELRSP 40

Alias for the receipt of an Auto-Configuration DELETE-RSP message via the 41
UMTCLT.indication primitive. The received DELETE-RSP message contains the following fields, 42
parameters and values: 43

ind_umt_subtype 44
ind_umtm_message_type Ü DELETE-RSP (see Table B-1) 45
ind_revision 46
ind_sequence_number 47
ind_transaction_id_tlv 48
ind_umt_peer_identifier_tlv 49
ind_requested_umt_subtypes_tlv 50
ind_tunnel_adapter_descriptor_tlv 51

Page | 17
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1
UMTCLTREQ_DELACK 2

Alias for the request for a Auto-Configuration DELETE-ACK message to be sent via the 3
UMTCLT.request primitive. The requested DELETE-ACK message contains the following fields, 4
parameters and values: 5

req_umt_subtype 6
req_umtm_message_type Ü DELETE-ACK (see Table B-1) 7
req_revision 8
req_sequence_number 9
req_transaction_id_tlv 10
req_umt_peer_identifier_tlv 11
req_requested_umt_subtypes_tlv 12
req_tunnel_adapter_descriptor_tlv 13

 14
UMTCLTIND_DELREQ 15

Alias for the receipt of a Auto-Configuration DELETE-REQ message via the UMTCLT.indication 16
primitive. The received DELETE-REQ message contains the following fields, parameters and 17
values: 18

ind_umt_subtype 19
ind_umtm_message_type Ü DELETE-REQ (see Table B-1) 20
ind_revision 21
ind_sequence_number 22
ind_transaction_id_tlv 23
ind_umt_peer_identifier_tlv 24
ind_requested_umt_subtypes_tlv 25
ind_tunnel_adapter_descriptor_tlv 26

 27
UMTCLTREQ_DELRSP 28

Alias for the request for a Auto-Configuration DELETE-RSP message to be sent via the 29
UMTCLT.request primitive. The requested DELETE-RSP message contains the following fields, 30
parameters and values: 31

req_umt_subtype 32
req_umtm_message_type Ü DELETE-RSP (see Table B-1) 33
req_revision 34
req_sequence_number 35
req_transaction_id_tlv 36
req_umt_peer_identifier_tlv 37
req_requested_umt_subtypes_tlv 38
req_tunnel_adapter_descriptor_tlv 39

 40
UMTCLTREQ_DELREJ 41

Alias for the request for a Auto-Configuration DELETE-REJ message to be sent via the 42
UMTCLT.request primitive. The requested DELETE-REJ message contains the following fields, 43
parameters and values: 44

req_umt_subtype 45
req_umtm_message_type Ü DELETE-REJ (see Table B-1) 46
req_revision 47
req_sequence_number 48
req_transaction_id_tlv 49
req_umt_peer_identifier_tlv 50
req_reason_code 51

Page | 18
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1
UMTCLTIND_DELACK 2

Alias for the receipt of a Auto-Configuration DELETE-ACK message via the 3
UMTCLT.indication primitive. The received DELETE-ACK message contains the following 4
fields, parameters and values: 5

ind_umt_subtype 6
ind_umtm_message_type Ü DELETE-ACK (see Table B-1) 7
ind_revision 8
ind_sequence_number 9
ind_transaction_id_tlv 10
ind_umt_peer_identifier_tlv 11
ind_requested_umt_subtypes_tlv 12
ind_tunnel_adapter_descriptor_tlv 13

B.4.2 UMT Peer Discovery 14

As depicted in Figure B-4, the UMT Discovery function is contained in the UMT Peer Maintenance entity 15
and consists of: 16

a) Active Discovery. This function is responsible for soliciting discovery responses from neighboring 17
UMT peers. 18

b) Passive Discovery. This function is responsible for listening for UMT discovery solicitations and 19
responding accordingly to received solicitations. 20

B.4.2.1 Active Discovery 21

A UMT Maintenance entity may implement the Active Discovery process. If the Active Discovery process 22
is implemented, it shall implement the active discovery state diagram shown in Figure B-5. 23

Page | 19
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1

Figure B-5 - Active Discovery Process State Diagram 2

B.4.2.1.1 START_DISC_TIMER State 3

Upon initialization, the START_DISC_TIMER state is entered. In the START_DISC_TIMER state, the 4
Active Discovery process starts the discovery_tx_timer. Upon completion of the START_DISC_TIMER 5
state, the Active Discovery process transitions to the TX_SOLICIT state. 6

B.4.2.1.2 TX_SOLICIT State 7

When the Active Discovery process enters the TX_SOLICIT state, the Active Discovery process asserts the 8
UMTCLT.request primitive with the required parameters to send a UMT Maintenance SOLICIT message. 9
The UMTCLT.request primitive is asserted toward the Active Peer Discovery Tunnel Adapter (See 10
B.3.3.3) so that the SOLICIT message is sent as a MAC broadcast. 11

B.4.2.1.3 WAITING State 12

The Active Discovery process enters the WAITING state after completing the TX_SOLICIT state. In the 13
WAITING state, the Active Discovery process waits for a UMT Maintenance HELLO message to arrive 14
via the UMTCLT.indication primitive or for the discovery_tx_timer to expire. 15

If the discovery_tx_timer expires, the Active Discovery process moves back to the TX_SOLICIT state to 16
send another UMT Maintenance SOLICIT message. 17

If the Active Discovery process receives a UMTCLT.indication containing a UMT Maintenance HELLO 18
message, the Active Discovery process moves to the RX_HELLO state. All other received message types 19
are silently ignored by the Active Discovery process. 20

Page | 20
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

B.4.2.1.4 RX_HELLO State 1

Upon entering the RX_HELLO state, the Active Discovery process calls the save_peer_info function to 2
store the information received in the UMT Maintenance HELLO message. Upon completion, the Active 3
Discovery Process moves to the WAITING state. 4

B.4.2.2 Passive Discovery Process 5

A UMT Maintenance entity may implement the Passive Discovery process. If the Passive Discovery 6
process is implemented, it shall implement the passive discovery state diagram shown in Figure B-6. 7

 8

 9

Figure B-6 - Passive Discovery Process State Diagram 10

B.4.2.2.1 WAITING State 11

Upon initialization the Passive Discovery process enters the WAITING state. In the WAITING state, the 12
Passive Discovery process waits to receive a UMT Maintenance SOLICIT message via the 13
UMTCLT.indication primitive asserted by the Passive Peer Discovery Receive Tunnel Adapter. Upon 14
receipt of the SOLICIT message, the Passive Discovery process moves to the RX_SOLICIT state. 15

B.4.2.2.2 RX_SOLICIT State 16

Upon entry to the RX_SOLICIT state, the Passive Discovery process calls the save_peer_info function to 17
store the information received in the UMT Maintenance SOLICIT message. Upon completion, the Passive 18
Discovery process moves to the TX_HELLO state. 19

Page | 21
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

B.4.2.2.3 TX_HELLO State 1

When the the Passive Discovery process enters the TX_HELLO state, the Passive Discovery process calls 2
the create_tunnel_adapter function to create the Passive Peer Discovery Transmit Tunnel Adapter. The 3
Passive Discovery process then asserts the UMTCLT.request primitive with the required parameters to 4
send a UMT Maintenance HELLO message. After UMTCLT.request primitive is asserted, the Passive 5
Discovery process calls the delete_tunnel_adapter function to remove the Passive Peer Discovery Transmit 6
Tunnel Adapter from operation. 7

B.4.3 UMT Auto-Configuration 8

As depicted in Figure B-4, the UMT Auto-Configuration function is contained in the UMT Peer 9
Maintenance entity. The Auto-Configuration process is responsible for communicating with peer Auto-10
Configuration entities to negotiate the creation and deletion of UMT Tunnel Adapters. The Auto-11
Configuration process is comprised of the following subprocesses: 12

a) Configuration Initiator. This function intitiates a request to a peer Auto-Configuration entity to 13
request that a new Tunnel Adapter be created on the peer. 14

b) Configuration Init Receiver. This function receives configuration requests from peer Auto-15
Configuration entities and negotiates with the peer entity to agree on the parameters for 16
configuring a new Tunnel Adapter. 17

c) Delete Initiator. This function intitiates a request to a peer Auto-Configuration entity to request 18
that a Tunnel Adapter be deleted from the peer. 19

d) Delete Receiver. This function receives requests for tunnel adapter deletion from peer Auto-20
Configuration entities and negotiates with the peer entity to agree on the deletion of the Tunnel 21
Adapter. 22

B.4.3.1 Configuration Initiator 23

A UMT Maintenance entity may implement the Auto-Configuration process. If the Auto-Configuration 24
process is implemented, it shall implement the Configuration Initiator state diagram shown in Figure B-7. 25

Page | 22
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1

Figure B-7 - Configuration Initiator State Diagram 2

B.4.3.1.1 WAITING State 3

Upon initialization, the WAITING state is entered. In the WAITING state, the Configuration Initiator 4
subprocess sets the retry_counter to zero and waits for assertion of the UMTAC.request primitive with the 5
action parameter set to indicate a create action. 6

B.4.3.1.2 TX_CONFIG_REQ State 7

When the TX_CONFIG_REQ state is entered, the Configuration Initiator subprocess starts the retry_timer, 8
increments the retry_counter, and asserts the UMTCLT.request primitive with the required parameters to 9
send a CONFIG-REQ message. 10

B.4.3.1.3 WAIT_FOR_CFG_RSP State 11

In the WAIT_FOR_CFG_RSP state, the Configuration Initiator subprocess waits for any of the following 12
events: 13

Page | 23
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

retry_timer expires 1
If the retry_timer expires, the Configuration Initiator subprocess will compare the value of 2
retry_counter to the value of max_retries. If retry_timer is less than max_retries, then the 3
Configuration Initiator subprocess moves to the TX_CONFIG_REQ state. If retry_timer equals or 4
exceeds max_retries then the Configuration Initiator subprocess moves to the WAITING state. 5

Receive CONFIG-NAK 6
If the UMTCLT.indication primitive is asserted and contains a CONFIG-NAK, the Configuration 7
Initiator subprocess will compare the value of retry_counter to the value of max_retries. If 8
retry_timer is less than max_retries, then the Configuration Initiator subprocess moves to the 9
TX_CONFIG_REQ state where the Configuration Initiator subprocess shall adjust the values of 10
the parameters, fields, and TLVs to be sent in the CONFIG-REQ in a way to achieve agreement 11
with the remote peer’s configuration as sent in the CONFIG-NAK. If retry_timer equals or 12
exceeds max_retries then the Configuration Initiator subprocess moves to the WAITING state. 13

Receive CONFIG-REJ 14
If the UMTCLT.indication primitive is asserted and contains a CONFIG-REJ, the Configuration 15
Initiator subprocess will compare the value of retry_counter to the value of max_retries. If 16
retry_timer is less than max_retries, then the Configuration Initiator subprocess moves to the 17
TX_CONFIG_REQ state where the Configuration Initiator subprocess shall adjust the parameters, 18
fields, and TLVs to be sent in the CONFIG-REQ in a way to achieve agreement with the remote 19
peer’s configuration as sent in the CONFIG-REJ. If retry_timer equals or exceeds max_retries 20
then the Configuration Initiator subprocess moves to the WAITING state. 21

Receive CFG-RSP 22
If the UMTCLT.indication primitive is asserted and contains a CONFIG-RSP, indicating that the 23
remote peer agrees with the configuration sent in the CONFIG_REQ message, the Configuration 24
Initiator subprocess will move to the TX_CONFIG_ACK state. 25

B.4.3.1.4 TX_CONFIG_ACK State 26

When the Configuration Initiator subprocess enters the TX_CONFIG_ACK state, the Configuration 27
Initiator subprocess assert the UMTCLT.request primitive with the parameters required to send a CONFIG-28
ACK message. The Configuration Initiator subprocess will then call the create_tunnel_adapter function 29
with the tunnel descriptor and UMT subtypes specified in the CONFIG-REQ message. 30

B.4.3.2 Configuration Init Receiver 31

A UMT Maintenance entity may implement the Auto-Configuration process. If the Auto-Configuration 32
process is implemented, it shall implement the Configuration Init Receiver state diagram shown in Figure 33
B-8. 34

Page | 24
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1

Figure B-8 - Configuration Init Receiver State Diagram 2

B.4.3.2.1 WAITING State 3

Upon initialization, the WAITING state is entered. In the WAITING state, the Configuration Init Receiver 4
subprocess sets the retry_counter to zero and waits for assertion of the UMTCLT.indication primitive with 5
the umt_client_sdu containing a CONFIG-REQ message. 6

B.4.3.2.2 CHECK_CFG_REQ State 7

Upon entering the CHECK_CFG_REQ state, the Configuration Init Receiver subprocess calls the 8
check_cfg_request function to check if the received CONFIG-REQ fields, paramaters, TLVs and values are 9
acceptable. 10

If the check_cfg_request returns a cfg_req indicating the request is acceptable (cfg_req=RSP), then the 11
Configuration Init Receiver subprocess moves to the TX_CFG_RSP state. If the check_cfg_request returns 12
a cfg_req indicating the request contains fields, parameters or TLVs that are unacceptable (cfg_req=REJ), 13
then the Configuration Init Receiver subprocess moves to the TX_CFG_REJ state. If the check_cfg_request 14
returns a cfg_req indicating the request indicating that the values of the fields, parameters or TLVs are 15

Page | 25
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

unacceptable (cfg_req=NAK), then the Configuration Init Receiver subprocess moves to the 1
TX_CFG_NAK state. 2

B.4.3.2.3 TX_CFG_RSP State 3

In the TX_CFG_RSP state the the Configuration Init Receiver subprocess starts retry_timer and increments 4
retry_counter. The Configuration Init Receiver subprocess copies ind_requested_umt_subtypes_tlv into 5
req_requested_umt_subtypes_tlv, ind_tunnel_adapter_descriptor_tlv into req_tunnel_adapter_descriptor, 6
and ind_transaction_id_tlv into req_tranaction_id_tlv and then asserts the UMTCLT.request service 7
primitive with the parameters required to send a CONFIG-RSP message. 8

B.4.3.2.4 TX_CFG_NAK State 9

B.4.3.2.5 TX_CFG_REJ State 10

B.4.3.2.6 WAIT_FOR_CFG_ACK State 11

In the WAIT_FOR_CFG_ACK state, the Configuration Init Receiver subprocess waits for assertion of the 12
UMTCLT.indication primitive with the umt_client_sdu containing a CONFIG-ACK message. If 13
retry_timer expires before a CONFIG-ACK is received 14

B.4.3.2.7 CREATE_TUNNEL_ADAPTER State 15

B.4.3.3 Delete Initiator 16

A UMT Maintenance entity may implement the Auto-Configuration process. If the Auto-Configuration 17
process is implemented, it shall implement the Delete Initiator state diagram shown in Figure B-9. 18

Page | 26
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1

Figure B-9 - Delete Initiator State Diagram 2

B.4.3.3.1 WAITING State 3

B.4.3.3.2 TX_DEL_REQ State 4

B.4.3.3.3 WAIT_FOR_DEL_RSP State 5

B.4.3.3.4 TX_DEL_ACK State 6

B.4.3.4 Delete Receiver 7

A UMT Maintenance entity may implement the Auto-Configuration process. If the Auto-Configuration 8
process is implemented, it shall implement the Delete Receiver state diagram shown in Figure B-10 9

Page | 27
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1

Figure B-10 - Delete Receiver State Diagram 2

B.4.3.4.1 WAITING State 3

B.4.3.4.2 CHECK_DEL_REQ State 4

B.4.3.4.3 TX_DEL_RSP State 5

B.4.3.4.4 TX_DEL_REJ State 6

B.4.3.4.5 WAIT_FOR_DEL_ACK State 7

B.4.3.4.6 DELETE_TUNNEL_ADAPTER State 8

B.5 UMT Peer Maintenance SDU Format 9

UMT Peer Maintenance SDUs are encapsulated in UMTPDUs under the UMT Peer Maintenance subtype 10
(See IEEE Std. 1904.2 Table 4-2). 11

Page | 28
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

UMT Peer Maintenance SDUs may be fragmented and span multiple UMTPDUs. It is up to the UMT 1
Client to manage SDU fragmentation and reassembly. The Sequence Number field is present in the UMT 2
Peer Maintenance SDU to aid the UMT Client in managing the fragmentation process. 3

B.5.1 Structure 4

The UMT Peer Maintenance PDU structure shall be as shown in Figure B-11. 5

 6
Figure B-11 - UMT Peer Maintenance PDU Structure 7

UMT Peer Maintenance PDUs shall have the following fields 8

a) Destination Address (DA). This is the Destination Address field. Its use in the context of UMT is 9
specified in IEEE Std 1904.2 Clause 4. 10

b) Source Address (SA). This is the Source Address field. Its use in the context of UMT is specified 11
in IEEE Std 1904.2 Clause 4. 12

c) Length/Type. This is the Length/Type field. Its use in the context of UMT is specified in IEEE Std 13
1904.2 Clause 4. 14

d) Subtype. The Subtype field identifies the specific UMT Client layer being encapsulated. For UMT 15
Peer Management PDUs, the Subtype field value carries the UMT Maintenance/Peer Management 16
value as specified in IEEE Std. 1904.2 Table 4-2. 17

e) UMTM Message Type. The UMTM Message Type field specifies the UMT Peer Maintenance 18
Message Type. Valid values for the Message Type field are specified in Table B-1. 19

f) Revision. The Revision field contains the revision number of the configuration contained in the 20
UMT Peer Maintenance Message PDU. The revision number begins at 1 and increments each time 21
a change occurs in the content of the data being transmitted in the UMT Peer Maintenance 22
Message PDU. A change causing an increment of the revision can be a change in the value of a 23
field or TLV, or the addition or deletion of a TLV. 24

g) Sequence Number. The Sequence Number field provides a method to signal to the receiving UMT 25
Maintenance peer that the UMT Peer Maintenance Message spans multiple UMTPDUs. 26

Page | 29
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

h) Data. This field contains one or more UMT Peer Maintenance TLVs. Valid UMT Peer 1
Maintenance TLVs are specified in B.5.2. 2

i) FCS. This field is the Frame Check Sequence, as defined in IEEE Std. 802.3. 3

Table B-1 - UMT Maintenance Message Types 4

UMT Maintenace
Message Type

Message Name

0 Reserved
1 SOLICIT
2 HELLO
3 CONFIG-REQ
4 CONFIG-ACK
5 CONFIG-NAK
6 CONFIG-REJ
7 DELETE-REQ
8 DELETE-ACK
9 DELETE-REJ

10-252 Unassigned
253 Vendor-Specific
254 Unassigned
255 Reserved

 5

B.5.2 UMT Peer Maintenance TLVs 6

B.5.3 Encodings for UMT Maintenance TLVs 7

The following type/length/value encodings are used in UMT Maintenance messages. 8

B.5.3.1 Supported UMT SubTypes 9

This field describes the list of UMT SubTypes (Table 4-2) that are supported by the UMT peer. This list is 10
structured as a series of 1-octet values. Each supported type is represented by its corresponding value found 11
in Table 4-1. The Length parameter indicates the number of 1-octet values contained in the field. 12

Type Length Value
1 n List of UMT Subtypes supported by the UMT

peer (values from Table 4-1)

B.5.3.2 Requested UMT Subtypes 13

This field describes the list of UMT Subtypes (Table 4-1) being requested by the UMT peer for use on a 14
UMT tunnel adapter. This list is structured as a series of 1-octet values. Each supported type is represented 15
by its corresponding value found in Table 4-1. The Length parameter indicates the number of 1-octet values 16
contained in the field. 17

Type Length Value
2 n List of UMT Subtypes supported by the UMT

peer (values from Table 4-1)

Page | 30
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

B.5.3.3 Transaction Identifier 1

The value of this TLV contains a 4-octet random number generated by the UMT Peer sending a CONFIG-2
REQ or DELETE-REQ. The transaction identifier is used by the requestor and requested UMT peers to 3
correlate the messages sent between the two UMT peers. 4

Type Length Value
3 4 4-octet random number

 5

B.5.3.4 Tunnel Adapter Descriptor 6

This field describes the characteristics of a tunnel adapter. It is formatted as a set of encapsulated sub-TLVs. 7
When used in a UMT Peer Maintenance SDU, the Tunnel Adapter Descriptor shall contain one and no 8
more than one instance of each of the sub-TLVs defined in this subclause. 9

Type Length Value
4 n Encapsulated sub-TLVs

B.5.3.4.1 Tunnel Adapter Transmission Method Subtype 10

This field specifies the tunnel adapter type. Valid values are Broadcast, Multicast, or Unicast. 11

Type Length Value
1 1 1 – Broadcast

2 – Unicast
3 – Multicast
4 – Receive Only

 12

B.5.3.4.2 Tunnel Adapter Indicated Source Address Subtype 13

This field specifies the Source Address of incoming UMTPDUs to be associated with the local tunnel 14
adapter. This is the MAC Source Address that the local tunnel adapter expects in a received UMTPDU. 15

Type Length Value
2 6 48-bit MAC address

B.5.3.4.3 Tunnel Adapter Indicated Destination Address Subtype 16

This field specifies the Destination Address of transmitted UMTPDUs to be associated with the local tunnel 17
adapter. This is the MAC Destination Address that the local tunnel adapter expects in a received UMTPDU. 18

Type Length Value
3 6 48-bit MAC address

B.5.3.4.4 Tunnel Adapter Requested Source Address Subtype 19

This field specifies the Source Address of transmitted UMTPDUs to be associated with the remote tunnel 20
adapter. This is the MAC Source Address that the remote tunnel adapter expects in a received UMTPDU. 21

Type Length Value
4 6 48-bit MAC address

Page | 31
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

B.5.3.4.5 Tunnel Adapter Requested Destination Address Subtype 1

This field specifies the Destination Address of transmitted UMTPDUs to be associated with the remote 2
tunnel adapter. This is the MAC Destination Address that the remote tunnel adapter expects in a received 3
UMTPDU. 4

Type Length Value
5 6 48-bit MAC address

B.5.3.5 UMT Peer Identifier 5

This field contains the 48-bit MAC address of the UMT peer that is sending the message. 6

Type Length Value
6 6 48-bit MAC address

B.5.3.6 Reason Code 7

This field contains a reason code encoded as an n-octet integer. The reason code indicates to a receiving 8
entity the reason for an error associated with the parameter negotiation. Multiple instances of this field may 9
be present in a UMT Maintenance SDU. 10

Type Length Value
7 n Reason Code (see Table B-2)

 11

Table B-2 - Reason Codes 12

Code Reason
0 Reserved. Do Not Use
1 No Tunnel Adapter Matches Requested Tunnel Adaptor

Descriptor
2 Requested SubType does not exist on Requested Descriptor
3 Unsupported SubType
4 Unsupported Tunnel Adapter Descriptor
5

 13

B.5.3.7 Vendor-Specific Extension 14

The Vendor-Specific extension field may be used to extend the capabilities of a specific implementation of 15
the UMT Peer Maintenance SDU. The format of this TLV is implementation-specific, but it is 16
recommended that it be formatted as an encapsulated set of subTLVs. 17

Type Length Value
253 n Unspecified

Page | 32
Copyright © 2018 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1

with the Subtype set to UMT Mainteance (see IEEE Std. 1904.2 Table 4-2) and requests that the UMT Peer 2
transmit the PDU (referred to as a UMT Maintenance PDU) as a MAC broadcast. 3

A UMT Peer Discovery entity operating in Passive or Active mode that receives the broadcast UMT 4
Maintenance PDU (UMTMPDU) 5

Upon initialization, a UMT Peer Discovery entity in Active mode configures the local UMT peer with a 6
UMT Tunnel Adapter configured for broadcast operation in the transmit direction (req_SA=local MAC 7
address, req_DA=MAC broadcast) and unicast operation in the receive direction (ind_SA=any MAC 8
address, ind_DA=local MAC address). This Tunnel Adapter is the Active Peer Discovery Tunnel Adapter. 9

A UMT Peer Discovery entity operating in Passive or Active mode configures a UMT Tunnel Adapter for 10
(req_SA=local MAC address, req_DA=MAC broadcast, ind_SA=any, ind_DA=MAC broadcast). This 11
second UMT Tunnel Adapter is called the Passive Peer Discovery Tunnel Adapter and is never used by the 12
UMT Peer Discovery entity to transmit a UMTPDU. 13

The Active UMT Peer Discovery entity generates an UMTPDU with the Subtype set to UMT Maintenance. 14
This UMTPDU will be called a UMT Maintenace SDU (UMTMSDU). The UMT Peer Discovery entity 15
requests that the UMTMSDU be transmitted through the Active Peer Discovery Tunnel Adapter. 16

Upon receipt of a broadcast UMTPDU containing a UMTMSDU, a UMT peer will deliver the UMTMSDU 17
to the UMT Peer Discovery entity via the Passive Peer Discovery Tunnel Adapter, if the entity exists on the 18
local UMT peer. 19

The receiving UMT Peer Discovery entity will determine whether to respond based on local policy 20
configured by the administrator. If local policy allows it, the UMT Peer Discovery entity will 21

 22

configure a new UMT Tunnel Adapter for unicast operation (req_SA=local MAC address, req_DA=SA 23
from received UMTMSDU, ind_SA= SA from received UMTMSDU, ind_DA=local MAC address). The 24
UMT Peer Discovery entity then forms a response UMTMSDU and transmits it through this newly 25
configured UMT Tunnel Adapter. 26

Upon receipt of the response, the Active UMT Peer Discovery entity, if local policy allows it, configures a 27
new UMT Tunnel Adapter for unicast operation (req_SA=local MAC address, req_DA=SA from received 28
UMTMSDU, ind_SA=SA from received UMTMSDU, ind_DA=local MAC address). The Active UMT 29
Peer Discovery entity then forms an UMTMSDU acknowledging the response, and sends it on the newly 30
formed UMT Tunnel Adapter. The two UMT Peer Discovery Entities continue the exchange of 31
UPDPSDUs until agreement is reached on the tunnel operational parameters or until one or both of the 32
UMT Peer Discovery Entities give up. 33

 34

