Шก

Timestamp Precision

Kevin Bross
15 April 2016

Timestamp Packets

\square The orderInfo field can be used as a 32-bit timestamp, down to $1 / 4 \mathrm{~ns}$ granularity:

-Two main uses of timestamp:

- Indicating start or end time of flow
- Indicating presentation time of packets for flows with non-constant data rates

Presentation Time

\square To reduce bandwidth during idle periods, some protocols will have variable rates

- Fronthaul may be variable, even if rate to radio unit itself is a constant rate
\square Presentation times allows RoE to handle variable data rates
- Data may experience jitter in network
- Egress buffer compensates for network jitter
- Presentation time is when the data is to exit the RoE node
- Jitter cleaners ensure data comes out cleanly, and on the right bit period

Jitter vs. Synchronization

\square Synchronization requirements for LTE are only down to $\sim \pm 65$ ns accuracy

- Each RoE node may be off from TAI by up to 65 ns (or more in some circumstances)
- Starting and ending a stream may be off by this amount
\square...but jitter from packet to packet must be much tighter
- RoE nodes should be able to output data at precise relative times if timestamp is used for a given packet
- Relative bit time within a flow is important

Timestamp Precision

\square Is the current $1 / 4 \mathrm{~ns}$ granularity tight enough for today's systems, and does it have headroom for the future?

- Each bit in 9.8 Gbps CPRI is $\sim 1 / 10 \mathrm{~ns}$
- Each bit in 24 Gbps CPRI is $\sim 1 / 24 \mathrm{~ns}$
- Rates of 100 Gbps or more are likely in the reasonable future
\square How do you specify a presentation time with bit times that may be tiny fractions of nanoseconds if the smallest unit is in $1 / 4$ nanoseconds?

Hypothetical Example

\square Assume 100 Gbps raw data rate, with extended idle periods suppressed
\square Raw data:

- ..., 0x3F, 0x4E, < 807 bytes of 0's>, 0x39, 0×41
- One packet ends with 0x4E
- Next packet starts with 0x99

HHow does RoE say when that packet is supposed to hit?

- One bit position early, first byte $=0 \times 72$
- One bit position late, first byte $=0 \times 1 \mathrm{C}$
\square Relative timing of bits is important

Proposed Redefinition

\square Define timestamps in terms of picoseconds, rather than nanoseconds:

$\square J u s t i f i c a t i o n: ~$

- Prior discussions indicated transit time will be less than 1 ms now and in future
- Provides headroom for future speed increases
- No change in field length or usage

Lower 2 Bits

$\square 30$ bits will handle down to picosecond level-what about the last 2 bits?

\square Two options (the first is recommended):

- Implement mini sequence number (0, 1, 2, 3, $0,1,2,3, \ldots)$ to detect missed packets
- Get some benefits of sequence number w/timestamp
- ... or continue down to $1 / 4 \mathrm{ps}$ time

Summary

\square This presentation proposes re-defining timestamp to handle picosecond timing:

- This handles presentation times up to 1 ms in the future, while offering precision to 1 ps
- Lower 2 bits could implement 2-bit sequence number to detect the occasional missing packet
- Or could be used to go down to $1 / 4 \mathrm{ps}$ timing
- Timestamp purpose/usage unchanged

