

IEEE P1904.1

Standard for Service Interoperability in Ethernet Passive Optical Networks (SIEPON)

Glen Kramer, SIEPON WG Chair

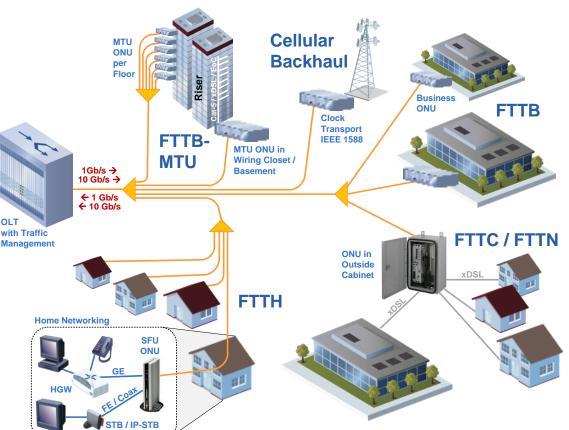
Joint BBF/SIEPON Workshop, Louisville, CO

EPON is a Universal Access Architecture

Deployed by all types of right-of-way holders

- Phone network operators
- Cable network operators
- Power line operators

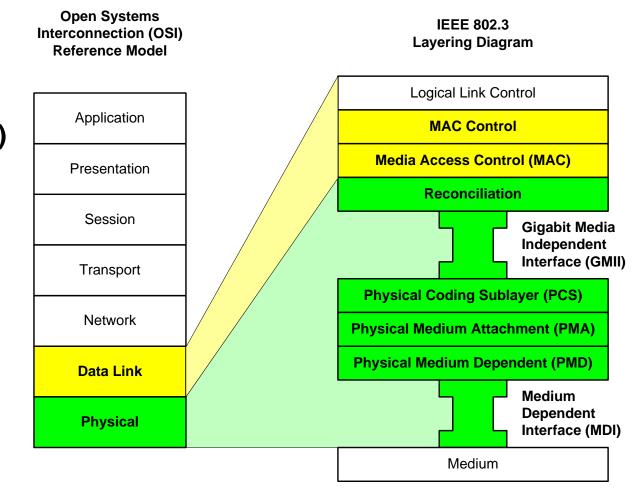
Supports all user types


- Residential
- Business
- Wireless backhaul

All configurations

- SFU
- MDU/MTU
- FTTH
- FTTC/FTTN

All Data Rates


- 1 Gb/s (802.3ah-2004)
- 2/1 Gb/s (CCSA-2009)
- 10/1 Gb/s (802.3av-2009)
- 10/10 Gb/s (802.3av-2009)

EPON architecture simultaneously supports all user types, all deployment configurations, and all equipment generations on the same network!

Scope of IEEE 802.3 is on Lower Layers

- IG-EPON was standardized in the IEEE P802.3ah "EFM" project (2000-2004)
- 10G-EPON was standardized in the IEEE P802.3av project (2006-2009)
- IEEE 802.3 covers only the Physical Layer and a portion of the Data Link Layer
- IEEE 802.3 focus is on transport, not on the system

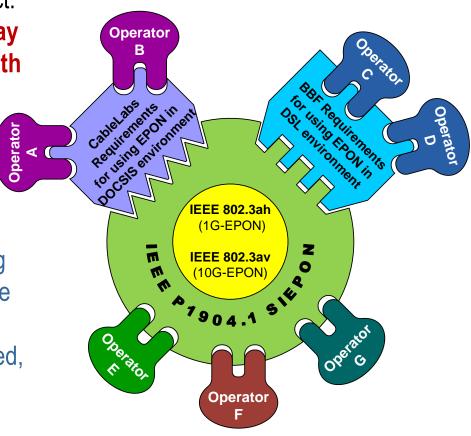
Big Guns Have Developed Their Own Specs

- From a carrier's perspective, the operation of OLT and ONUs is closely coupled, yet they are separate devices which may be sourced from different vendors.
- To ensure interoperability at the system level, additional specifications were necessary:
 - QoS mechanisms for multiple services (distinct SLAs)
 - Exact DBA mechanism
 - Packet-classification rules
 - Software/Firmware download
 - Service-aware power-saving mechanisms
 - Service protection and restoration mechanisms
 - Device and service management
- To expedite 1G-EPON deployments, big carriers (NTT, CTC) have created their own system specifications and interoperability testing plans (2+ year effort).

SIEPON Working Group

In 2009, the industry got together and decided that going forward, the development of next-generation specifications and interoperability plans should be done at shared cost.

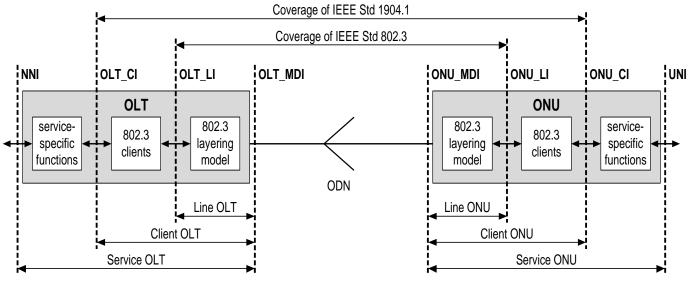
The following companies were members of SIEPON WG at various times:


- 1. Alcatel-Lucent
- 2. ARRIS
- 3. Aurora Networks
- 4. Bright House Networks
- 5. Broadcom Corporation
- 6. CableLabs
- 7. China Telecom
- 8. CommScope
- 9. Cortina
- 10. Ericsson

- 11. FiberHome Technologies
- 12. Fujitsu Telecom Networks
- 13. Hitachi Communications
- 14. Huawei Technologies
- 15. Ikanos Communications
- 16. Iometrix
- 17. KDDI
- 18. KT
- 19. Marvell
- 20. Mitsubishi Electric

- 21. NEC
- 22. NTT Corporation.
- 23. Oki Electric Industry
- 24. Oliver Solutions
- 25. PMC-Sierra, Inc.
- 26. Qualcomm-Atheros
- 27. RITT
- 28. Sumitomo Electric
- 29. UNH -- IOL
- 30. ZTE Corporation

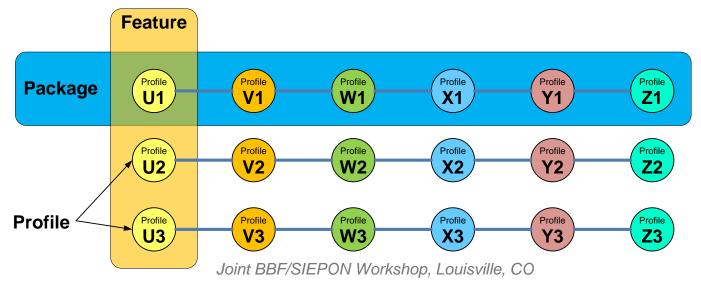
Common Rules and Principles


- SIEPON did not need to invent new technology or resolve technical challenges
- □ Various architectural features were already debugged, refined, deployed, and field-proven
- The goal of IEEE p1904.1 SIEPON project: Address in a consistent and uniform way the diverse requirements associated with
 - Multiple service models
 - Different provisioning and management concepts
 - Various deployment scenarios
- SIEPON is an "umbrella" standard defining a common reference architecture to ensure that EPON preserves <u>a single ecosystem</u>, as opposed to multiple, nationally-controlled, and fragmented ecosystems.

SIEPON Scope

SIEPON standard describes the system-level requirements needed to provide servicelevel, multi-vendor interoperability of Ethernet Passive Optical Network (EPON) equipment. The specifications complement the existing IEEE Std 802.3 and IEEE Std 802.1 standards which enable the interoperability at the Physical layer and Data Link layer. Specifically included in this specification are:

- EPON system-level interoperability specifications covering equipment functionality, traffic engineering, and service-level QoS/CoS mechanisms;
- Management specifications covering: equipment management, service management, and power utilization.



Joint BBF/SIEPON Workshop, Louisville, CO

Terminology

- Feature a generic function or a characteristic of an EPON device. Examples:
 - Report Format
 - Power Saving
- Profile a specific implementation or a configuration of a feature. Examples:
 - OLT-driven power-saving mechanism
 - Power-saving mechanism with support for ONU initiation/response
 - OLT-driven power-saving mechanism with multiple sleep cycles

Package – a set of profiles that represents a complete specification for interoperable OLT and ONUs

Package A: Specification targeting WW Cable Industry (aligned with DPoE)

Package B: Specification targeting Japanese incumbent phone operator market (aligned with NTT spec)

Package C: Specification targeting Chinese incumbent phone operator market (aligned with CTC spec)

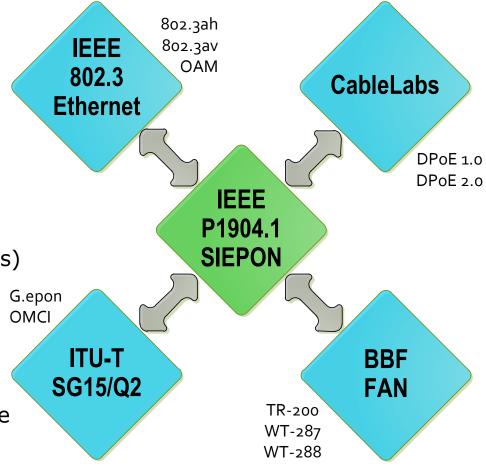
Coordination with Other Groups

IEEE P1904.1 has established close and productive relationships with

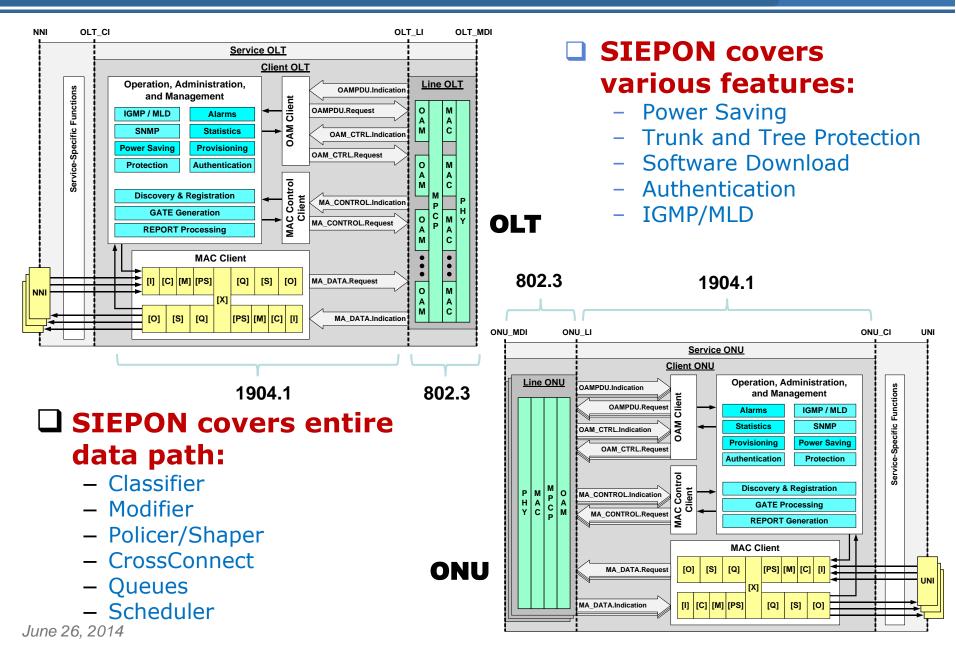
CableLabs

 DPoE provides requirements for EPON in MSO environments

Broadband Forum FAN


- TR-200 provides EPON Data Path (EDP) requirements
- Coordinating activities of WT-287 (optical monitoring) and WT-288 (deployment requirements)

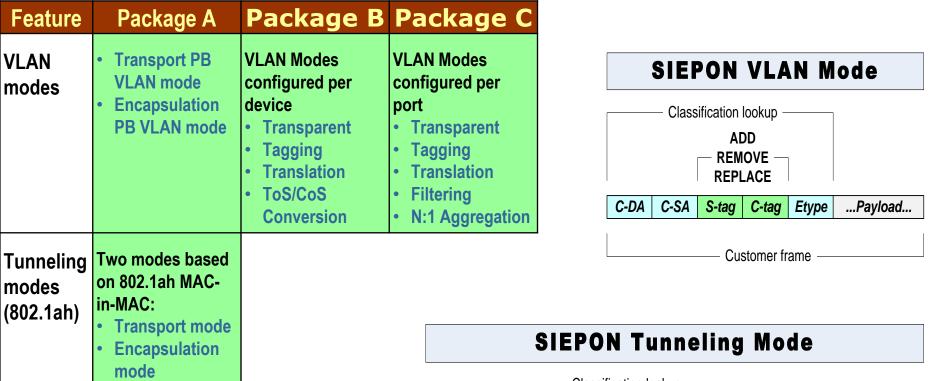
ITU-T SG15


Coordinating activities on G.epon

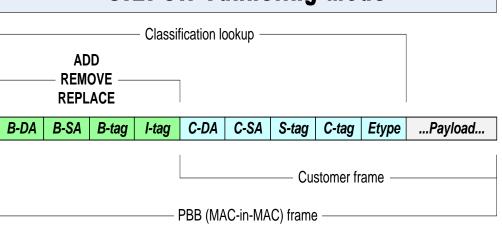
IEEE 802.3

- Successfully cooperated to allow an increased OAM frame rate
- Recently added support for multicast LLID

OLT and ONU Reference Architecture


Packages at a glance

Feature	Package A	Package B	Package C
Support for EDP	N/A	N/A	\checkmark
REPORT MPCP format	\checkmark	\checkmark	\checkmark
Queue service discipline	\checkmark	\checkmark	\checkmark
ONU and OLT transceiver status monitoring	\checkmark	\checkmark	\checkmark
Port loop detection	N/A	N/A	\checkmark
Remote ONU Tx power supply control	N/A	N/A	\checkmark
Events	\checkmark	\checkmark	\checkmark
Optical link protection	N/A	\checkmark	\checkmark
Data encryption	Ref. DPoE	Ref. 802.3	N/A
ONU authentication	Ref. DPoE	\checkmark	\checkmark
Management	\checkmark	\checkmark	\checkmark
Device and capability discovery	\checkmark	\checkmark	\checkmark
Software update	\checkmark	\checkmark	\checkmark
Management entities	\checkmark	\checkmark	\checkmark
Power saving	\checkmark	\checkmark	\checkmark
Performance monitoring	N/A	N/A	\checkmark
VLAN modes	\checkmark	\checkmark	\checkmark
Tunneling modes (802.1ah)	\checkmark	N/A	N/A
Multicast connectivity	\checkmark	\checkmark	\checkmark

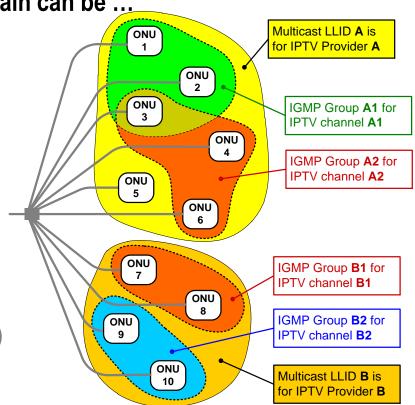


Key Features

VLAN and Tunneling Modes

- VLAN modes operate over L2 headers of customer frames
- Tunneling modes operate over encapsulating fields and don't modify customer frame

Joint BBF/SIEPON Workshop, Louisville, CO

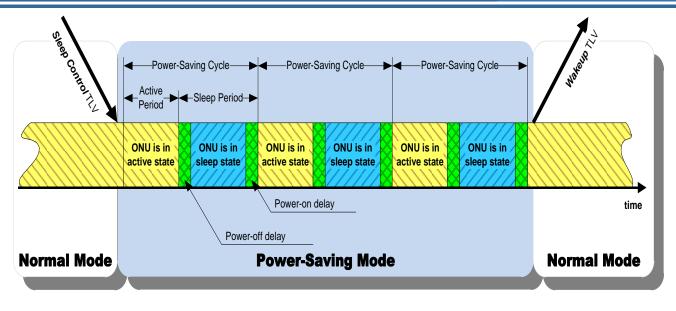

June 26, 2014

Multicast in EPON

An EPON may serve multiple domains. A domain can be

- A set of ONUs serving one subscriber (campus/company)
- A set of ONUs served by one service provider (e.g., ABC, CBS, NBC)
- Set of ONUs participating in specific operation requiring broadcast
 - Power Saving
 - Protection
 - Time sync
 - Software download (grouped by version/vendor)

An ONU may belong to multiple domains



Feature	Package A	Package B	Package C	
Multicast connectivity	 Multicast based on combined LLID and IP group addresses. 	 Multicast based on VLAN and/or MAC group address. 	Multicast based on combined VLAN and MAC or IP group address with and without authorization control.	
June 26, 2014	 IGMP-based and MLD- based multicast control. 	MLD-based multicast control.	IGMP-based and MLD-based multicast control. 15	

Power-Saving in SIEPON

Main objectives

- Achieve power saving in EPON <u>without negative</u> <u>impact on user QoS</u>
- Support both 1G-EPON and 10G-EPON ONUs
- Coexistence of ONUs supporting power saving and ONUs not supporting it

Key characteristics

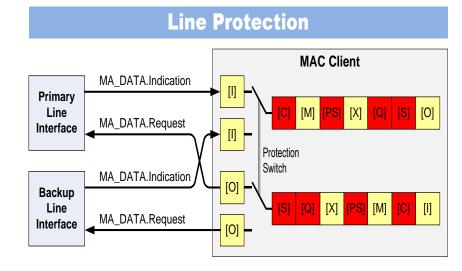
- The OLT discovers the sleep mode supported by each ONU: Tx only or Tx+Rx
- The OLT decides which of the ONUs is eligible to participate in each power-saving cycle.
- □ The power-saving mechanism can be **static** (provisioned by the NMS) or **dynamic** (based on data load on the given ONU, configured services, user activity, etc.)
- **Early Wakeup** function allows ONUs to exit the sleep state earlier than previously scheduled in response to the local conditions, such as off-hook condition on SIP ports, power down, etc.;
- Synchronized Wakeup function wakes up ONUs belonging to the same service group at the same time to facilitate multicast content distribution.

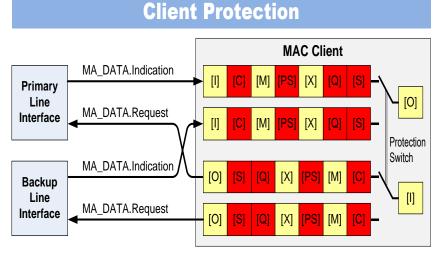
June 26, 2014

Internal Data Path Redundancy

Data path comprises the following functional elements:

- [I] Input port
- [C] Classifier
- [M] Modifier
- **[PS]** Policer/Shaper **[O]** Output port
- [X] Cross-connect
- **[Q]** Queues
- [S] Scheduler

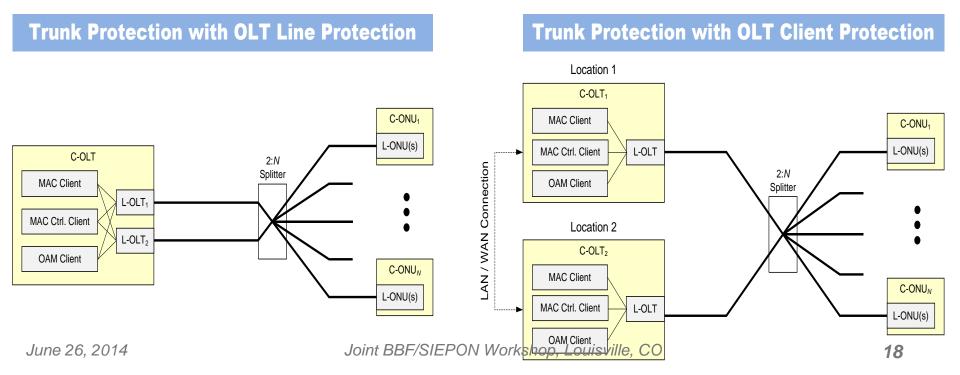

Blocks using <u>combinatorial</u> logic (yellow \rightarrow)


- The output of a functional block only depends only on the input.

Blocks using <u>sequential</u> logic (red \rightarrow)

- The output of a functional block depends on the input plus past history or the internal state of the block

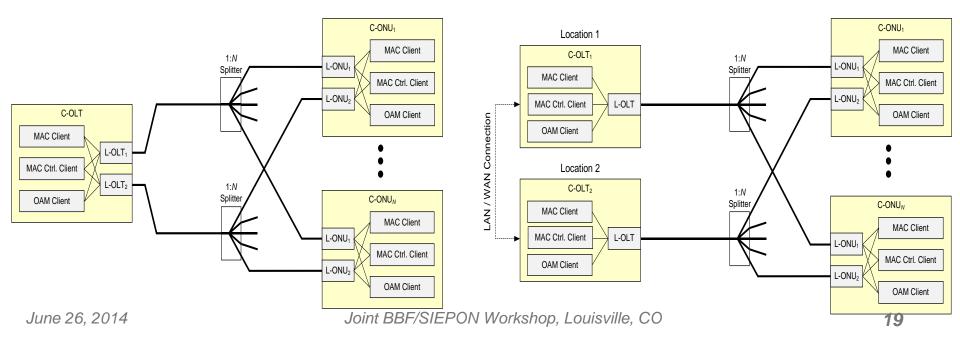
	Line protection	Client protection
Data path is protected	No	Yes
MAC tables, queued data, shaper tokens, and scheduling states are preserved across the protection event.	Yes	No



Trunk Protection Schemes

In the trunk protection scheme,

- The ODN span between the OLT and the optical splitter is protected.
- The ONU and the branch fiber (ODN span between the splitter and the ONU) are not protected.
- Trunk protection is cheaper to deploy and does not add any ONU complexity
- Protection is applied only to elements that have the highest failure impact (Trunk fiber, OLT transceiver)


Tree Protection Schemes

In the tree protection scheme,

- The entire ODN (trunk segment and branch segments) is protected against failure.
- ONUs have dual PON interfaces and implement either line protection or client protection
- Tree protection scheme provides redundancy for the entire data path and generally targets mission-critical deployments (banking/trading, control systems, corporate access, etc.)

Tree Protection with OLT Line Protection

Tree Protection with OLT Client Protection

SIEPON Standard

□ SIEPON standard was approved in June 2013

The standard is very broad and very detailed.

- 834 pages,
- 155 figures,
- 455 tables,
- 30 state diagrams
- Work continues on standardizing Conformance Tests for the 3 packages

IEEE STANDARDS ASSOCIATION

IEEE

IEEE Standard for Service Interoperability in Ethernet Passive Optical Networks (SIEPON)

IEEE Communications Society

Sponsored by the Standards Development Board

IEEE 3 Park Avenue New York, NY 10016-5997 USA

IEEE Std 1904.1™-2013

14 June 2013

Thank You