
5 Universal Management Tunnel Protocol Data Units (UMTPDU) 1

5.1 UMTPDU Structure 2

5.2 UMTPDU Subtype encoding 3

5.2.1 UMT configuration subtype 4

5.2.2 OAM subtype 5

A UMTPDU with OAM subtype (Subtype field = 0x03) is an instantiation of a generic UMTPDU, as defined 6
in 5.1, that carries an Operations, Administration, and Maintenance (OAM) payload (see IEEE Std 802.3, 7
57.4). The frame structure of UMTPDU with OAM subtype is defined in 7.2.1. 8

5.2.3 OMCI Subtype 9

<TBD> 10

5.2.4 L2 Subtype 11

A UMTPDU with L2 subtype (Subtype field = 0x05) is an instantiation of a generic UMTPDU, as defined in 12
5.1, that carries a complete L2 frame as its payload. The frame structure of UMTPDU with L2 subtype is 13
defined in 7.3.1. 14

5.2.5 L3 Subtype 15

A UMTPDU with L3 subtype (Subtype field = 0x06) is an instantiation of a generic UMTPDU, as defined in 16
5.1, that carries an L3 packet as its payload. The frame structure of UMTPDU with L3 subtype is defined in 17
7.4.1. 18

5.2.6 Organization-specific extension subtypes 19

5.3 VLAN-Tagged UMTPDU 20

 21

6 UMT sublayer 1

 2

7 Per Protocol Specifications 1

7.1 Support for UMT Configuration 2

The tunnels originate and terminate in the UMT-aware devices. The tunnels are configured by means of 3
provisioning specific CTE rules for the tunnel entry and exit points. These rules are provisioned by the 4
operator using the UMT_CONFIG UMTPDUs, which carry a set of condition-encoding TLVs and a set of 5
action-encoding TLVs. 6

7.1.1 Configuration UMTPDU 7

The UMT_CONFIG UMPTPDU format shall be as depicted in Figure 7-1. The UMT_CONFIG UMTPDU 8
is used as both a request to configure a CTE rule as well as a response containing the result of the 9
configuration request. 10

 11
Figure 7-1—UMT_CONFIG UMTPDU format 12

The UMT_CONFIG UMTPDU is an instantiation of the generic UMTPDU (see Error! Reference source 13
not found.). It is identified by the Subtype field value of 0x00. The structure of the UMT payload is defined 14
as follows: 15

—MsgCode: 16
The MsgCode field identifies whether the UMT_CONFIG message is a request message or a response. If 17
the UMTPDU is a request, this field encodes the requested action. If the UMTPDU is a response, this 18
field echoes the requested action and encodes the result code for this action. The format of the MsgCode 19
field is shown in Table 7-1. 20

Table 7-1—Format of the MsgCode field 21

Bits Field name Value Description

3:0 MsgType
0x0 The message is a request

0x1 The message is a response indicating successful action

DestinationAddress

LengthType = 0xA8-C8

Subtype = 0x00

SourceAddress

1

2

6

6

MsgCode

MsgSequence

Octets

2

1

PortInstance 2

FCS 4

RuleTLVs

Pad

UMT
payload

a – Maximum field length depends on frame type (see Figure 5-1).

40 – Na

0x2 The message is a response indicating failed action

0x3 The message is a response indicating that no action was necessary

0x4 The message is a response indicating invalid request

0x5 to 0xF Reserved, ignored on reception

7:4 RequestCode

0x0 Query all rules

0x1 Add a rule

0x2 Remove a rule

0x4 to 0xF Reserved, ignored on reception

—MsgSequence: 1
In situations when a UMT configuration request or a response consists of multiple messages, this field 2
identifies the message sequence number. The field is represented by a decrementing counter, with the last 3
message in a sequence having the MsgSequence value of zero. When a request or a response consists of 4
a single UMTPDU, this field has the value of zero. 5
Note that even when a UMT configuration request or a response consists of multiple messages, a single 6
rule is not split across multiple messages and as such – no reassembly mechanism is necessary to 7
reconstruct any rule. An example scenario where the response consists of multiple messages with 8
decrementing MsgSequence values would be a UMT configuration response to a ‘Query all rules’ request, 9
where multiple rules are being reported. 10

—PortInstance: 11
This field identifies a port instance in the UMT-aware device to which the given UMT_CONFIG 12
UMTPDU applies. The format of the PortInstance field is shown in Table 7-2. 13

Table 7-2—Format of the PortInstance field 14

Bits Field name Value Description

14:0 PortIndex
0x00-00

to
0x7F-FF

Index of a port (UMT sublayer) to which the requested action is to
be applied.

15 Direction
0 The rule is to be applied to the transmit path of UMT sublayer

(i.e., an egress rule)

1 The rule is to be applied to the receive path of UMT sublayer (i.e.,
an ingress rule)

 15
In the UMT response message, this field reflects the PortInstance field value from the corresponding 16
UMT request message. 17

— RuleTLVs: 18
This field includes one or more CTE rule TLV(s) as defined in 7.1.2. The combined size of the RuleTLV 19
and Pad fields ranges between 40 and N, where N is defined in Error! Reference source not found.. 20

7.1.2 CTE rule TLV structure 21

The structure of a CTE rule TLV is shown in Table 7-3. Each UMT_CONFIG UMTPDU shall contain at 22
least one CTE rule TLV. 23

Table 7-3—CTE rule TLV structure 24

Field Size
(octets) Field Name Value Description

1 Type

0xC0 Type code identifying the condition-encoding TLV
0xAC Type code identifying the action-encoding TLV

0x00

Type code indicating that there are no more TLVs to
process. The Length field and other fields (if present) are
ignored. The TLV with Type = 0x00 shall be the last
TLV in every UMT_CONFIG UMTPDU and it may be
the only TLV in the UMT_CONFIG UMTPDU.

1 Length V+M+4
The Length field encompasses the entire TLV, including
the Type and Length fields. A TLV with length of 0x00
through 0x03 is invalid.

1 Operationa
per Table 6-1 Comparison operator code, if the TLV Type = 0xC0
per Table 6-3 Action code, if the TLV Type = 0xAC

V FieldCodea per Table 6-2 Identifies a field to be used in a comparison, or to be
modified by an action.

L Value Various The value to be used in a comparison or by an
Add/Change action. Some TLVs may omit this field.

Mb Mask various

The mask pattern to be used in a comparison condition.
The mask pattern is applied as a bitwise-AND operation
to both the value to be used in a comparison (see the
Value field above) as well the value of the field identified
by the FieldCode parameter of this TLV. Some TLVs
may omit this fieldc. When Mask is omitted, the
comparison applies to the entire field.

a) Fields Operation and FieldCode shall be present in all TLVs, even if they are not used. When these fields 1
are not used, they should be set to the value of zero. 2

b) The length M of Mask field shall be the same as the length of Value field, if mask field is present. Otherwise, 3
the length M is considered to be equal to zero. 4

c) If a CTE rule TLV omits the Value field, the Mask field shall also be omitted. 5

 6

7.1.3 Receive Path Specification 7

7.1.4 Transmit Path Specification 8

 9

7.2 Support for OAM 10

7.2.1 OAM_subtype UMTPDU Encoding 11

The frame structure of UMTPDU with OAM subtype shall be as depicted in Figure 7-2. 12

 1
Figure 7-2—Format of UMTPDU with OAM subtype 2

The structure of the UMT payload in the UMTPDU with OAM subtype is defined as follows: 3

—Flags: 4
This field carries the value of the Flags field as defined in IEEE Std 802.3, 57.4. 5

—Code: 6
This field carries the value of the Code field as defined in IEEE Std 802.3, 57.4. 7

—Data: 8
This field carries the payload portion of the OAMPDU as defined IEEE Std 802.3, 57.4. 9

 10

7.2.2 Receive Path Specification 11

7.2.3 Transmit Path Specification 12

7.2.4 Support for OAM remote loopback 13

7.2.4.1 Overview 14

OAM defined in IEEE Std 802.3, 57.2.11 provides an optional data link layer frame-level loopback mode, 15
which can be used for fault localization and link performance testing. 16

The OAM entity that initiates the loopback mode is called the local OAM entity. The OAM entity on the 17
opposite end of a link is called the remote OAM entity. In the OAM remote loopback mode, the local and 18
remote OAM entities operate as follows: 19

a) The local OAM entity transmits frames from the MAC client and OAMPDUs from the local OAM 20
client or OAM sublayer. 21

b) Within the OAM sublayer of the remote OAM entity, every received OAMPDU is passed to the 22
OAM client, while non-OAMPDUs, including other Slow Protocol frames, are looped back without 23
altering any field of the frame. 24

c) Frames received by the local OAM entity are parsed by the OAM sublayer. OAMPDUs are passed 25
to the OAM client and all other frames are discarded. 26

DestinationAddress

LengthType = 0xA8-C8

Subtype = 0x03

SourceAddress

1

2

6

6

Flagsa

42 – 1496

Codea

Dataa

Octets

a – This field is defined in IEEE 802.3, 57.4

FCS 4

1

2

Pad

UMT
payload

Both OAM entities continue exchanging OAMPDUs in order to keep the OAM discovery process from 1
restarting and to perform other management tasks. 2

7.2.4.2 OAM loopback over UMT tunnel 3

When the OAM loopback is initiated over a UMT tunnel, the behavior of the local and remote OAM entities 4
remains as it is described in 7.2.4.1. Specifically, the remote OAM sublayer loops back all non-OAMPDUs 5
(i.e., generates an MA_DATA.request() primitive in response to every MA_DATA.indication() primitive that 6
does not contain an OAMPDU). The local OAM sublayer discards all received non-OAMPDU frames. 7

However, to ensure that the non-OAMPDUs transmitted by the local MAC client are delivered to the remote 8
OAM sublayer, an additional UMT tunnel needs to be established from the local DTE to the remote DTE. 9
Similarly, to deliver the looped-back frames from the remote DTE back to the local DTE, a UMT tunnel 10
operating in the opposite direction also needs to be established. 11

Since the OAM is a link-level protocol (i.e., operates over a single-span link), either a DTE itself or a bridge 12
immediately adjacent to that DTE must be UMT-aware. A network configuration with both the local and the 13
remote DTE being UMT-unaware is illustrated in Figure 7-3. 14

 15
Figure 7-3— Remote OAM loopback over UMT tunnel with UMT-unaware local 16

DTE and UMT-unaware remote DTE. 17

Local DTE (UMT-unaware)

MAC Control
sublayer

MAC
Control
client

OAM
sublayer

MAC sublayer

PHY layer

OAM
client

MAC
client

Remote DTE (UMT-unaware)

MAC Control
sublayer

MAC
Control
client

OAM
sublayer

MAC sublayer

PHY layer

OAM
client

MAC
client

OAM subtype tunnel

L2 Encapsulation tunnel

Bridge X (UMT-aware) Bridge Y (UMT-aware)

The remote OAM loopback can also be established when one of the DTEs is UMT-aware and the other is 1
not. Figure 7-4 illustrates a network configuration with the local DTE being UMT-aware and the remote DTE 2
being UMT-unaware. 3

 4
Figure 7-4— Remote OAM loopback over UMT tunnel with UMT-aware local 5

DTE and UMT-unaware remote DTE. 6

Figure 7-5 represents a similar network configuration, but with both the local and the remote DTEs being 7
UMT-aware. 8

OAM
sublayer

UMT
sublayer

Local DTE (UMT-aware)

MAC Control
sublayer

MAC
Control
client

MAC sublayer

PHY layer

OAM
client

MAC
client Remote DTE (UMT-unaware)

MAC Control
sublayer

MAC
Control
client

OAM
sublayer

MAC sublayer

PHY layer

OAM
client

MAC
client

OAM subtype tunnel

L2 Encapsulation tunnel

Bridge X (UMT-unaware) Bridge Y (UMT-aware)

 1
Figure 7-5— Remote OAM loopback over UMT tunnel with UMT-aware local 2

DTE and UMT-aware remote DTE. 3

While the OAM subtype tunnel between the local and remote DTEs persists permanently to ensure that the 4
two OAM entities are able to exchange OAMPDUs, the bidirectional tunnel for the looped-back data only 5
needs to be established for the duration of the loopback mode. This tunnel has L2 encapsulation subtype in 6
order to deliver any non-OAMPDU (regardless of their Source and destination MAC addresses) to from the 7
local DTE to the remote DTE and in the reverse direction, from the remote DTE to the local DTE. 8

Table 7-4 illustrates the tunnel entrance rules for the UMT L2 encapsulation tunnel from the local DTE to 9
the remote DTE. The table shows two rules that have different conditions, but identical actions. If these rules 10
are provisioned in the bridge adjacent to the local DTE, as illustrated in Figure 7-3, these are ingress tunnel 11
entrance rules. If the rules are provisioned in the local DTE itself, as illustrated in Figure 7-4 and Figure 7-5, 12
these are egress tunnel entrance rules. 13

Table 7-4—Tunnel entrance rule for non-OAMPDU traffic from 14
local DTE to remote DTE 15

OAM
sublayer

UMT
sublayer

UMT
sublayer

OAM
sublayer

Local DTE (UMT-aware)

MAC Control
sublayer

MAC
Control
client

MAC sublayer

PHY layer

OAM
client

MAC
client

OAM subtype tunnel

L2 Encapsulation tunnel

Bridge X (UMT-unaware) Bridge Y (UMT-unaware)

Remote DTE (UMT-aware)

MAC Control
sublayer

MAC
Control
client

MAC sublayer

PHY layer

OAM
client

MAC
client

Conditions Actions

1. ETYPE_LEN != SP_TYPE 1. ADD(UMT_DST_ADD, <remote_MAC>)

2. ADD(UMT_SRC_ADD, <local_MAC>)
3. ADD(UMT_ETH_TYPE, UMT_TYPE)

4. ADD(UMT_SUBTYPE, L2_subtype)
1. ETYPE_LEN == SP_TYPE

2. XPDU_SUBTYPE != OAM_subtype

NOTE:
<local_MAC > - MAC address associated with the loopback port in the local DTE
<remote_MAC > - MAC address associated with the loopback port in the remote DTE

SP_TYPE – Slow Protocol Ethertype value (see IEEE Std 802.3, 57A.4)
UMT_TYPE – Ethertype value identifying UMTPDUs (see 5.1)

OAM_subtype – UMT subtype value identifying OAMPDU payload (see 5.2)
L2_subtype – UMT subtype value identifying L2 encapsulation payload (see 5.2)

Table 7-5 illustrates the tunnel exit rule for the UMT L2 encapsulation tunnel from the local DTE to the 1
remote DTE. If this rule is provisioned in the bridge adjacent to the remote DTE, as illustrated in Figure 7-3 2
and Figure 7-4, this rule is an egress tunnel exit rule. If the rule is provisioned in the remote DTE itself, as 3
illustrated in Figure 7-5, this rule is an ingress tunnel exit rule. 4

Table 7-5—Tunnel exit rule for non-OAMPDU traffic from 5
local DTE to remote DTE 6

Conditions Actions

1. DST_ADDR == <remote_MAC>

2. SRC_ADDR == <local_MAC>
3. ETH_TYPE == UMT_TYPE

4. UMT_SUBTYPE == L2_subtype

1. REMOVE(UMT_DST_ADDR)

2. REMOVE(UMT_SRC_ADDR)
3. REMOVE(UMT_ETH_TYPE)

4. REMOVE(UMT_SUBTYPE)

NOTE:
<local_MAC > - MAC address associated with the loopback port in the local DTE
<remote_MAC > - MAC address associated with the loopback port in the remote DTE

UMT_TYPE – Ethertype value identifying UMTPDUs (see 5.1)
L2_subtype – UMT subtype value identifying L2 encapsulation payload (see 5.2)

The entrance rules for the return tunnel (from the remote DTE back to the local DTE), the rules are similar 7
to the rules shown in Table 6-8, but with <local_MAC> and <remote_MAC> values swapped. Similarly, the 8
tunnel exit rule is as shown in Table 6-9, but also with <local_MAC> and <remote_MAC> values swapped. 9

 10

7.3 Support for L2 subtype 1

7.3.1 L2_subtype UMTPDU Encoding 2

The frame structure of UMTPDU with L2 subtype shall be as depicted in Figure 7-6. 3

 4
Figure 7-6—Format of UMTPDU with L2 subtype 5

The structure of the UMT payload in the UMTPDU with L2 subtype is defined as follows: 6

—L2DestAddr: 7
This field carries the L2 destination address of the original L2 frame being tunneled using UMT. 8

—L2SrcAddr: 9
This field carries the L2 source address of the original L2 frame being tunneled using UMT. 10

—L2LengthType: 11
This field carries the Length/Type value of the original L2 frame being tunneled using UMT. 12

—Data: 13
This field carries the L2 payload of the original L2 frame being tunneled using UMT. The combined size 14
of the Data and Pad fields ranges between 31 and N, where N is defined in Error! Reference source not 15
found.. 16

7.4 Support for L3 Subtype 17

7.4.1 L3_subtype UMTPDU Encoding 18

The frame structure of UMTPDU with L3 subtype shall be as depicted in Figure 7-7. The format of the 19
Data/Pad field is dependent on the value of the EthertypeTPID field and is beyond the scope of this standard. 20

a – Maximum field length depends on frame type (see Figure 5-1).

DestinationAddress

LengthType = 0xA8-C8

Subtype = 0x05

SourceAddress

1

2

6

6

L2DestAddr

31 – Na

L2SrcAddr

Data

Octets

FCS 4

6

6

L2LengthType 2
UMT

payload

Pad

 1
Figure 7-7—Format of UMTPDU with L3 subtype 2

The structure of the UMT payload in the UMTPDU with L3 subtype is defined as follows: 3

—EthertypeTPID: 4
This field carries the L2 Ethertype/TPID value of the original L3 packet being tunneled using UMT. 5

—Data: 6
This field carries the L3 packet being tunneled using UMT. The combined size of the Data and Pad fields 7
ranges between 43 and N, where N is defined in Error! Reference source not found.. 8
 9

7.5 Support for OMCI 10

 11

a – Field format depends on the value of EthertypeTPID field.
b – Maximum field length depends on frame type (see Figure 5-1).

DestinationAddress

LengthType = 0xA8-C8

Subtype = 0x05

SourceAddress

1

2

6

6

43 – Nb
Dataa

Octets

FCS 4

EthertypeTPID 2

Pad

UMT
payload

