
1.1 Receive path specification 1

Editorial Note: This is subclause 6.2 2

1.1.1 Principles of operation 3

The receive path of the VLC sublayer includes the Receive process. The Receive process waits for assertion 4
of the MACCSI:MA_DATA.indication(), as defined in 4.3.1.x. 5

Upon assertion of MACCSI:MA_DATA.indication(), the received frame is processed by the ingress 6
Classification and Translation Engine (CTE) and if a matching rule is found, the frame is modified according 7
to the matched rule’s action. If the frame does not match any rules, it is passed through the CTE block 8
unmodified. 9

After traversing the ingress CTE block, the frame is dispatched to one of the VLCSI interfaces: 10
(VLCSI:VLCPDU, VLCSI:OMCI, or VLCSI:MA_DATA). The dispatching decision is based on the values 11
of the MAC destination address, Ethernet Type/Length, and VLC subtype. 12

VLCPDUs with the MAC destination address matching the local MAC address and the VLC subtype equal 13
to VLC_SUBTYPE (see Error! Reference source not found.) are modified to match the parameters expected 14
by the VLCSI:VLCPDU. indication() primitive (see 4.3.1.x) and the VLC sublayer passes those 15
parameters to the higher-layer entity by asserting the VLCSI:VLCPDU.indication() primitive. 16

VLCPDUs with the MAC destination address matching the local MAC address and the VLC subtype equal 17
to OAM_SUBTYPE (see Error! Reference source not found.) are converted into OAMPDUs by the CTE. 18
The resulting OAMPDUs are passed by the VLC sublayer to the higher-layer entity by asserting the 19
VLCSI:MA_DATA.indication() primitive. 20

The VLCPDUs with the destination address matching the local MAC address and the VLC subtype equal to 21
OMCI_SUBTYPE (see Error! Reference source not found.) are modified to match the parameters expected 22
by the VLCSI:OMCI. indication() primitive (see Error! Reference source not found.) and the VLC 23
sublayer passes those parameters to the higher-layer entity by asserting VLCSI:OMCI. indication() 24
primitive. 25

All other xPDUs are pass through the CTE unmodified and the VLC sublayer asserts the 26
VLCSI:MA_DATA.indication() primitive to pass the unmodified xPDUs to the higher-layer entity 27
where they may be consumed by a local client or bridged to another port. 28

The Receive process does not discard any frames, i.e., every MACCSI:MA_DATA.indication() 29
primitive results in a generation of a single indication primitive on either VLCSI:VLCPDU, VLCSI:OMCI, 30
or VLCSI:MA_DATA interface. 31

Note that no provisioning of the ingress tunnel exit rules is required in situations where the tunnel is 32
terminated at the same port where the xPDUs are to be consumed by their respective clients. The functionality 33
to convert VLCPDUs into xPDUs destined for a local client is built-in into the Receive process. 34

1.1.2 Constants 35

DST_ADDR 36

This constant identifies a field in a frame, as defined in Error! Reference source not found.. 37

Deleted: for a frame to be received on 38
Deleted: interface (via MACCSI:MA_DATA.indication() 39
primitive, …40
Deleted:)41
Formatted: Font: (Default) Courier New
Deleted: When a frame is received,42
Deleted: it 43
Deleted: (highlighted in Figure 6-4)44
Deleted: t45
Deleted: 46
Deleted: The 47
Deleted: Table 5-148
Deleted: are passed to the VLCSI:VLCPDU interface49

Deleted: The 50
Deleted: Table 5-151

Deleted: and are passed to the 52
Deleted: interface.53

Deleted: Table 5-154
Deleted: 4.3.1.4.255
Deleted: and are passed to the VLCSI:OMCI interface56

Deleted: passed 57
Deleted: to the 58
Deleted: interface. Note that there still may be other local clients 59
that will intercept/consume these xPDUs at a higher layer. 60

Deleted: Table 6-261

ETH_TYPE_LEN 1

This constant identifies a field in a frame, as defined in Error! Reference source not found.. 2

LOCAL_MAC_ADDR 3

TYPE: 48-bit MAC address 4

This constant holds the value of the MAC address associated with the port where the Receive 5
process state diagram is instantiated. Some devices may associate the same MAC address value with 6
multiple ports. The format of MAC address is defined in IEEE Std 802.3, 3.2.3. 7

VALUE: device-specific 8

OMCI_SUBTYPE 9

This constant represents a VLCPDU subtype as defined in Error! Reference source not found.. 10

SP_ADDR 11

This constant holds the value of the destination MAC address associated with Slow Protocols (see 12
IEEE Std 802.3, 57A.3). 13

SP_TYPE 14

This constant holds the value of the Ethertype identifying the Slow Protocol (see IEEE Std 802.3, 15
57A.4). 16

SRC_ADDR 17

This constant identifies a field in a frame, as defined in Error! Reference source not found.. 18

XPDU_SUBTYPE 19

This constant identifies a field in a frame, as defined in Error! Reference source not found.. 20

VLC_ETH_TYPE 21

TYPE: 16-bit Ethernet Type/Length 22

This constant holds the Ethernet Type/Length value identifying a frame as a VLCPDU. 23

VALUE: 0xA8-C8 24

VLC_SUBTYPE 25

This constant represents a VLCPDU subtype as defined in Error! Reference source not found.. 26

1.1.3 Variables 27

IngressRuleId 28

TYPE: 16-bit unsigned integer 29

This variable identifies one of the provisioned CTE ingress rules. It also may have a special value 30
none that does not identify any of the provisioned rules. 31

RxInputPdu 32

TYPE: structure 33

This variable holds an Ethernet frame received from the MACCSI:MA_DATA interface. The fields 34
of this structure correspond to the parameters of the MA_DATA.indication() primitive, as 35
defined in IEEE Std 802.3, 2.3.2. 36

Deleted: Table 6-237

Deleted: Table 5-138

Deleted: Table 6-239

Deleted: Table 6-240

Deleted: ER41

Deleted: type42

Deleted: type 43
Deleted: the 44
Deleted: s45
Deleted: 46
Deleted: Table 5-147

Deleted: containing an Ethernet frame48

RxOutputPdu 1

TYPE: structure 2

This variable holds an Ethernet frame that is the result of processing by the CTE. The fields of this 3
structure correspond to the parameters of the MA_DATA.indication() primitive, as defined in 4
IEEE Std 802.3, 2.3.2. 5

The RxOutputPdu structure supports the RemoveField(field_code) method and the 6
ReplaceField(field_code). The RxOutputPdu structure may contain an incomplete 7
Ethernet frame. 8

1.1.4 Functions 9

CheckIngressRules(input_pdu) 10

This function returns the identification of an ingress rule that matched the frame contained in 11
RxInputPdu structure. If multiple rules macthed the frame, the function returns an identification 12
of any of these rules. If none of the rules matched the frame, a special value none is returned. 13

Modify(rule_id, input_pdu) 14

This functions returns a frame that is a result of applying the modification action(s) of the rule 15
identified by the rule_id parameter to the frame contained in the input_pdu parameter. 16

1.1.5 Primitives 17

The primitives referenced in this state diagram are defined in Error! Reference source not found.. 18

1.1.6 State Diagram 19

VLC sublayer shall implement the Receive process as defined in the state diagram in Figure Error! No text 20
of specified style in document.-1. 21

Deleted: containing an Ethernet frame22

Deleted: to be passed to one of the the VLCSI interfaces 23
(VLCSI:VLCPDU, VLCSI:OMCI, or VLCSI:MA_DATA). 24

Deleted: Additionally, the25
Deleted: , which removes a field identified by the 26
field_code from the structure.27
Deleted: Thus, unlike the RxInputPdu structure, the28
Deleted: only a partial29
Deleted: . The field_code parameter takes values as defined 30
in Table 6-231

Deleted: 4.3.132

Deleted: Figure 6-433

 1

Figure Error! No text of specified style in document.-1—Receive process state 2
diagram 3

Deleted: 4

WAIT_FOR_FRAME

BEGIN

RxOutputPdu.DestAddr == LOCAL_MAC_ADDR

DISPATCH_MAC_ADDR

DISPATCH_ETHERTYPE

DISPATCH_SUBTYPE

MACCSI:MA_DATA.indication(RxInputPdu)

RxOutputPdu.Ethertype == VLC_ETHERTYPE

RxOutputPdu.Subtype == VLC_SUBTYPE

RxOutputPdu.Subtype == OMCI_SUBTYPE a

PASS_TO_MA_DATA_IF
VLCSI:MA_DATA.indication(RxOutputPdu)

else

else

else

UCT a

PASS_TO_OMCI_CLIENT a

RxOutputPdu.RemoveField(DST_ADDR)
RxOutputPdu.RemoveField(SRC_ADDR)
RxOutputPdu.RemoveField(ETH_TYPE_LEN)
RxOutputPdu.RemoveField(SUBTYPE)
VLCSI:OMCI.indication(RxOutputPdu)

PASS_TO_VLC_CLIENT
RxOutputPdu.RemoveField(DST_ADDR)
RxOutputPdu.RemoveField(SRC_ADDR)
RxOutputPdu.RemoveField(ETH_TYPE_LEN)
VLCSI:VLCPDU.indication(RxOutputPdu)

UCT

UCT

UCT

CTE_CHECK_CONDITION
IngressRuleId = CheckIngressRules(RxInputPdu)

CTE_APPLY_ACTION
RxOutputPdu = Modify(IngressRuleId, RxInputPdu)

CTE_BYPASS
RxOutputPdu = RxInputPdu

IngressRuleId == noneelse

UCT

Classification
and Translation
Engine (CTE)

Provisioned
Ingress Rules

a This state/transition is not present
 in devices that do not implement
 the optional OMCI client

CONVERT_INTO_OAMPDU
RxOutputPdu.ReplaceField(DST_ADDR, SP_MAC_ADDR)
RxOutputPdu.ReplaceField(ETH_TYPE_LEN, SP_TYPE)
VLCSI:MA_DATA.indication(RxOutputPdu)

RxOutputPdu.Subtype == OAM_SUBTYPE

UCT

Deleted: 45

