
9 June 2016 IEEE 1904 Access Networks Working Group, Hørsholm, Denmark 1

Jouni Korhonen

Broadcom Ltd.

5/26/2016

RoE timestamp and
presentation time in past

Background

�RoE ‘2:24:6’ timestamp was recently (see
tf3_1604_bross_timestamp_4.pdf) approved
as:

�Also stating:
– Benefits of this timestamp

• 16 ms range covers 1 radio frame

• Precision down to ~16 ps accuracy (1/64 ns)

– 2-bit sequence number at top allows detection of
up to 3 missed packets

�This is fine.

9 June 2016 IEEE P1904.1 WG Meeting, Hørsholm, Denmark 2

Background cont’d

�The RoE specification says timestamp
(=presentation time) is:

– “The RoE presentation time is used to achieve
time synchronization between the RoE
endpoints. The presentation time is calculated
by the RoE sender and represents the time
when the RoE packet payload has to be played
out from the RoE receiver packet buffer to the
consumer of the payload data.”

�So far so good..

9 June 2016 IEEE 1904 Access Networks Working Group, Hørsholm, Denmark 3

How about late packets?

�The on-wire timestamp is encoded as 2^24
ns * 2^6 -> total 30 bits.

�This represents a timestamp that is 0 to
~16ms ahead of the current node ToD when
calculated at the receiver..

�What if the packet containing the timestamp
arrives past the presentation time it carries
i.e., packet arrives late??

� Issue: Current mechanism cannot detect late
packets properly.

�Late packet should never happen BUT errors
happen and detecting an error sitoation would
be a useful if not a mandatory feature!

9 June 2016 IEEE 1904 Access Networks Working Group, Hørsholm, Denmark 4

How to correct the situation?

�One could always treat the timestamp as a
+-8ms value..
– Pros: does not change anything at the sender as
long as the presentation time is less than 8ms
ahead of time.

– Cons: the timestamp cannot even point beyond
one 10ms radio frame.. not good.

�One could define a ‘acceptable timestamp
window’ value that is between 0 to ~16ms.
Values less than ‘acceptable timestamp
window’ are in time and those that are
greater are considered late.
– This is based on the wrap around properties when
calculating the presentation time from the
timestamp at the receiver (examples will follow).

9 June 2016 IEEE 1904 Access Networks Working Group, Hørsholm, Denmark 5

Acceptable timestamp window

� A programmable value between 0 to ~16ms. Defaults
to a value that forces deployments to put something
meaningful into it. Example: zero (0).

� The amount of time reserved for ‘past timestamps’
must be large enough to cover hiccups and jitter in
the network.

� Example window partitioning:
– 12ms acceptable window, 4ms late window.
– 14ms acceptable window, 2ms late window.
– 16ms acceptable window, no late packets detected.

� No changes to the on-wire format!
� No changes to the sender!
� The receiver end needs to implement the ‘acceptable
timestamp window’ variable.

� Receiver has to make a comparison to detect whether
the timestamp is within the acceptable window.

9 June 2016 IEEE 1904 Access Networks Working Group, Hørsholm, Denmark 6

How timestamp conversion behaves..

�Calculating on-wire timestamp is simple at
the sender side – just cut the low 30 bits
of the presentation time.

– The assumption is that the presentation time is
in format: 2^n ns * 2^6, where n is max
number of bit reserved for the internal time
representation. The minimum n is 24.

�Example algorithm:

– n is 58 (time would be total 64 bit number)
– timestamp = presentationTime & TIMESTAMPMASK;

9 June 2016 IEEE 1904 Access Networks Working Group, Hørsholm, Denmark 7

How timestamp conversion behaves..

�Example algorithm to calculate the
presentation time from the on-wire
timestamp based on the local node’s time
is as follows:
– t0 = presentation time at the sender

– t1 = 30 bit on-wire timestamp

– t2 = local time at the receiver

– t3 = 30 low bits of t2

– delta = t1 – t3

– handle window wrap: delta &= TIMESTAMPMASK

– presentation time at the receiver: t2 + delta

9 June 2016 IEEE 1904 Access Networks Working Group, Hørsholm, Denmark 8

How does the window wrap work?

�For example: window=3 -> mask=7, acceptable window=5

�presentationTime is in time:

�presentationTime is late or too far ahead:

9 June 2016 IEEE 1904 Access Networks Working Group, Hørsholm, Denmark 9

delta = (3-7)&7 = 4

presTS = t2+delta = 15+4=19

delta = (1-3)&7 = 6 (>accp.)

presTS = t2+delta = 19+6=25

delta = (7-1)&7 = 6 (>accp.)

presTS = t2+delta = 25+6=31

delta = (7-1)&7 = 6 (>accp.)

presTS = t2+delta = 25+6=31

Example algorithm 1/2

#define WINMSKFULL 0x000000ffffffffffULL // 24 bit ns, 16 bit sub-ns

#define VALIDWIN 0x000000dfffffffffULL // valid to +14ms, late -2ms

#define P2WSHFT (16-6)

// Time expressed in units of nanoseconds and multiplied by 2^16.

typedef uint64_t iScaledNanoseconds;

// on-wire timestamp is ~16.8ms

typedef struct {

uint32_t seqnum : 2; //

uint32_t scaledNanoseconds : 30; // 24 bits ns * 2^6

} wireTimestamp;

// Convert the iScaledNanoseconds to the on-wire timestamp.

wireTimestamp time_to_wire(iScaledNanoseconds prests, uint32_t pField)

{

wireTimestamp w;

w.seqnum = pField;

w.scaledNanoseconds = (prests & WINMSKFULL) >> P2WSHFT;

return w;

}

9 June 2016 IEEE 1904 Access Networks Working Group, Hørsholm, Denmark 10

Example algorithm 2/2

// Acceptable timestamp window variable with some initial value

static iScaledNanoseconds acceptableWin = VALIDWIN;

// Convert the 32 bit on-wire timestamp to the iScaledNanoseconds

// i.e., to the presentation time. Ignore the sequence number.

// Inputs:

// localts = ptr to node’s current time

// wts = ptr to timestamp

// Returns:

// localts = presentation time (overrides the input local time)

// 1 if presentation time is within the valid time window

// 0 if presentation time is in past

int wire_to_time(iScaledNanoseconds* localts, wireTimestamp* wts)

{

iScaledNanoseconds prests, delta;

prests = (iScaledNanoseconds)wts->scaledNanoseconds << P2WSHFT;

delta = (prests - *localts) & WINMSKFULL;

*localts += delta;

return delta <= acceptableWin;

}

9 June 2016 IEEE 1904 Access Networks Working Group, Hørsholm, Denmark 11

Compare to plain +16ms algorithm..

// Convert the 32 bit on-wire timestamp to the iScaledNanoseconds

// i.e., to the presentation time. Ignore the sequence number.

// Returns:

// presentation time

int wire_to_time(iScaledNanoseconds localts, wireTimestamp* wts)

{

iScaledNanoseconds prests, delta;

prests = (iScaledNanoseconds)wts->scaledNanoseconds << P2WSHFT;

delta = (prests - localts) & WINMSKFULL;

return localts + delta;

}

The extra from the window check is one more comparison!

9 June 2016 IEEE 1904 Access Networks Working Group, Hørsholm, Denmark 12

Proposal

�Introduce a new configuration variable
that holds the ‘acceptable timestamp
window’ value (at the receiver).

9 June 2016 IEEE 1904 Access Networks Working Group, Hørsholm, Denmark 13

Comments?

9 June 2016 IEEE 1904 Access Networks Working Group, Hørsholm, Denmark 14

