
13 EXTENDED OAM FOR NX25G-EPON .. 2 1

13.1 REQUIREMENTS ... 2 2

13.1.1 Functional requirements ... 2 3

13.1.2 Frame size requirements ... 2 4

13.1.3 Frame rate requirements .. 2 5

13.1.4 Timing requirements ... 2 6

13.2 EOAMPDU STRUCTURE ... 2 7

13.2.1 Extended OAM organizationally-unique identifier (OUI) .. 3 8

13.2.2 eOAMPDU frame format .. 3 9
13.2.2.1 TLV-oriented structure ... 4 10

 Variable Descriptor TLV .. 4 11
 Variable Container TLV ... 4 12
 TLVs carrying large values ... 6 13

13.2.2.2 TLVs for 802.3 OAMPDUs .. 6 14
 Extended Information TLV .. 6 15
 Event Notification TLV .. 7 16

13.2.2.2.2.1 LoS (0x11) .. 9 17
13.2.2.2.2.2 Key Exchange Failure (0x12) .. 9 18
13.2.2.2.2.3 Port Disabled (0x21) .. 9 19
13.2.2.2.2.4 Power Failure (0x41) ... 9 20
13.2.2.2.2.5 Statistics Alarm (0x81) ... 9 21
13.2.2.2.2.6 ONU Busy (0x82) ... 10 22
13.2.2.2.2.7 MAC Table Overflow (0x83) .. 10 23
13.2.2.2.2.8 PON_IF_Switch (0x84) ... 10 24

13.2.2.3 Multipart eOAMPDU response sequence .. 10 25

13.3 EOAMPDU ... 11 26

13.3.1 eOAMPDU codes ... 11 27

13.3.2 eOAM_Get_Request eOAMPDU ... 12 28

13.3.3 eOAM_Get_Response eOAMPDU ... 12 29

13.3.4 eOAM_Set_Request eOAMPDU .. 13 30

13.3.5 eOAM_Set_Response eOAMPDU .. 14 31

13.3.6 eOAM_Software eOAMPDU ... 14 32
13.3.6.1 eOAM_Software eOAMPDU structure ... 14 33
13.3.6.2 eOAM_Software_WriteRequest eOAMPDU ... 15 34
13.3.6.3 eOAM_Software_FileTransferData eOAMPDU .. 16 35
13.3.6.4 eOAM_Software_FileTransferAck eOAMPDU .. 17 36

13.3.7 eOAM_KeyExchange eOAMPDU ... 18 37
13.3.7.1 eOAM_KeyExchange eOAMPDU structure .. 18 38
13.3.7.2 eOAM_KeyExchange_Assign eOAMPDU ... 19 39
13.3.7.3 eOAM_KeyExchange_ACK eOAMPDU ... 19 40

13.3.8 eOAM_Early_WakeUpOLT eOAMPDU .. 20 41

13.3.9 eOAM_Early_WakeUpONU eOAMPDU .. 20 42

13.3.10 eOAM_Sleep_Allowed eOAMPDU .. 21 43

13.4 EOAMPDU RETURN CODES .. 21 44

 45

13 Extended OAM for Nx25G-EPON 1

13.1 Requirements 2

13.1.1 Functional requirements 3

The EPON system supports all OAM functions as specified in IEEE Std 802.3, Clause 57, and an eOAM-4

based management suite providing the following functions and features: 5

 eOAM device and device capability discovery and notification 6

 Management of the FEC status and mode for the ONU EPON PHY 7

 Polling and setting DBA-related parameters, including the format of REPORT MPCPDU and 8

associated queue structures 9

 Polling and setting QoS-related parameters, including flow marking, cataloguing, classification 10

rules, etc. 11

 Configuration of user ports and their associated management 12

 Configuration and management of VLANs 13

 Configuration of multicast flows and associated management parameters 14

 Performing management actions on the ONU devices and subsystems, including port status 15

control, ONU device status verification, etc. 16

13.1.2 Frame size requirements 17

The eOAMPDU supports the maximum frame size with a payload of 1500 octets. The size of OAMPDUs 18

is specified in IEEE Std 802.3, 57A.2. 19

13.1.3 Frame rate requirements 20

The maximum frame rate for the sum of the IEEE 802.3 (Clause 57) OAMPDUs and eOAMPDUs per Line 21

ONU is as specified in IEEE Std 802.3, Clause 57 and 57A.2. 22

13.1.4 Timing requirements 23

Some eOAMPDUs require a response from the ONU. The ONU shall generate an eOAM_Get_Response or 24

eOAM_Set_Response eOAMPDU within 1 second of the reception of the corresponding 25

eOAM_Get_Request or eOAM_Set_Request eOAMPDU from the OLT. This requirement covers all types 26

of management requests issued by the OLT for the specific ONU: reading data from specific variable(s), 27

setting values to specific variable(s), performing indicated action(s). The OLT may discard all ONU 28

responses received after the expiration of the 1-second window without processing. 29

If an ONU cannot respond to the OLT request before the expiration of 1-second window, the ONU shall 30

generate the ONU Busy alarm (see 13.2.1.3.2.6). The reception of the ONU Busy alarm at the OLT 31

represents an error condition. The handling of this error is implementation specific. The raise of the ONU 32

Busy alarm is generally not a reason to deregister that ONU. 33

13.2 eOAMPDU structure 34

This subclause defines the internal structure of the eOAMPDU frame, i.e., the size and meaning of 35

individual fields, and describes a TLV-oriented approach to packaging data in the eOAMPDU. Two 36

specific types of the TLVs are also specified, namely the Variable Descriptor and the Variable Container. 37

The eOAMPDU format is derived from the IEEE 802.3 (Clause 57) OAM frame format, through the use of 1

Organization Specific Extension mechanism, as described in detail in IEEE Std 802.3, 57.4.2 (Figure 57-9), 2

and further extended in the following subclauses. 3

13.2.1 Extended OAM organizationally-unique identifier (OUI) 4

EPON devices shall implement OAM‐based management protocols per IEEE Std 802.3, Clause 57. This 5

standard defines eOAM mechanisms for managing various features defined in this standard. The eOAM 6

mechanisms utilize the Organization Specific OAMPDU, as defined in IEEE Std 802.3, 57.4.3.6. 7

OAMPDUs defined are identified by the IEEE Std 1904.4-specific organizationally unique identifier (OUI) 8

value, as defined in Table 13-1. Note that the OUI value is shared with Package A defined in 9

IEEE Std 1904.1. 10

Table 13-1—OUI values for SIEPON.4 features 11

OUI Description Value

OUI_1904_4 OUI value identifying IEEE Std 1904.4 OAMPDUs 0x58-D0-8F

 12

13.2.2 eOAMPDU frame format 13

Size of the individual fields in the eOAMPDU and their meanings shall be as shown in Table 13-1 and 14

meet the requirements included in the following description. 15

Table 13-1—Structure of the eOAMPDU frame 16

Size

(octets)
Field

(name)
Value Notes

6 Destination Address 0x01-80-C2-00-00-02

eOAMPDU

header

6 Source Address Varies

2 Length/Type 0x88-09 (Slow Protocol)

1 Subtype 0x03 (OAM)

2 Flags Varies

1 Code 0xFE (Organization Specific extensions)

3 OUI OUI_A

1 Opcode Varies

38 to 1492 Data + Pad Varies

4 FCS Varies

The eOAMPDU comprises the following fields: 17

a) Destination Address (DA). The DA in the eOAMPDUs is the Slow_Protocols_Multicast 18

address (i.e., 0x01-80-C2-00-00-02). Its use and encoding are specified in IEEE Std 802.3, Annex 19

57A. 20

b) Source Address (SA). The SA in eOAMPDUs carries the individual MAC address associated 21

with the port through which the eOAMPDU is transmitted. 22

c) Length/Type. The eOAMPDUs are always Type encoded and carry the Slow_Protocols_Type 23

field value. 24

d) Subtype. The Subtype field identifies the specific Slow Protocol being encapsulated. 25

e) Flags. The Flags field contains status bits as defined in IEEE Std 802.3, 57.4.2.1. 1

f) Code. The Code field identifies the specific type of the OAMPDU. The use and encoding of this 2

field are specified in IEEE Std 802.3, Table 57–4. 3

g) OUI. This field carries the organizationally unique identifier assigned to given organization. 4

h) Opcode. This field carries the value of the operation code, identifying a type of the eOAMPDU 5

specified in this profile (see 13.4.1.4). 6

i) Data/Pad. This field contains the eOAMPDU data and any necessary padding. The data portion 7

of the Data/Pad field carries a number of TLVs used to encode specific operations/values. 8

The Pad field is as defined in IEEE Std 802.3, Clause 3. 9

j) FCS. This field is the frame check sequence, as defined in IEEE Std 802.3, Clause 4. 10

The fields described in item a) through item g) are jointly referred to as the eOAMPDU header. 11

13.2.2.1 TLV-oriented structure 12

The Data/Pad field in the eOAMPDU may carry at least one TLV, used to encode a specific set of 13

values/operations. Individual TLV types for the eOAMPDU, i.e., Variable Descriptor and Variable 14

Container, are defined in the following subclauses. 15

A series of TLVs carried in any of the eOAM_Get_Request, eOAM_Get_Response, eOAM_Set_Request, or 16

eOAM_Set_Response eOAMPDUs shall be terminated with the Variable Descriptor with values carried in 17

the Branch and Leaf fields equal to 0. 18

 Variable Descriptor TLV 19

eOAM_Get_Request eOAMPDUs (see 13.4.2.2) use the list of Variable Descriptor TLVs and permit the 20

management system to request the value of one or more managed objects hosted on the ONU, both defined 21

in IEEE Std 802.3, Clause 30, and defined by this profile. 22

A Variable Descriptor TLV has the form of a 3-octet 2-tuple, comprising a 1-octet Branch code and a 2-23

octet Leaf code (together comprising the Type identifier), which unequivocally identifies the target 24

attribute/action. 25

The structure of a Variable Descriptor shall be as presented in Table 13-81. 26

Table 13-2—Structure of the Variable Descriptor 27

Size

(octets)
Field

(name)
Value range

1 Branch
Type

0x00: End of list of TLVs

0x01 to 0xFF

2 Leaf 0x00-00 to 0xFF-FF

 Variable Container TLV 28

eOAM_Get_Response eOAMPDUs (see 13.4.2.3), eOAM_Set_Request eOAMPDUs (see 13.4.2.4), and 29

eOAM_Set_Response eOAMPDUs (see 13.4.2.5) use the list of Variable Container TLVs and permit 30

— The ONU to respond to the eOAM_Get_Request eOAMPDU; or 31

— The management system to set the value of one or more target managed attributes hosted on the 1

ONU; or 2

— The ONU to respond to the eOAM_Set_Request eOAMPDU. 3

A Variable Container TLV has the form of a variable-length 4-tuple, comprising the following fields: 4

— A 1-octet-wide Branch field 5

— A 2-octet-wide Leaf field 6

— A 1-octet-wide Length field 7

— A variable-length Value field, the size of which is defined by the value carried in the Length 8

field 9

The Branch/Leaf 2-tuple represents the Type field and unequivocally identifies the target 10

attribute/action. 11

The Length code identifies the size of the following Value field, with additional restrictions: 12

— When the Length field value is in the range of 0x00 to 0x7F, it represents the length of the 13

Value field, expressed in units of octets, where the value of 0x00 represents the length of the 14

field equal to 128 octets and length in the range of 1 to 127 octets is mapped directly into the 15

range of 0x01 to 0x7F (see IEEE Std 802.3, 57.6.2.1). 16

— When the Length field value is in the range of 0x80 to 0xFF, the value carried in this field 17

represents the eOAMPDU return code and implies a zero length of the Value field (no additional 18

value is carried in that case). The eOAMPDU return codes are defined in 13.2.3. 19

The Value field is present only if the Length field value is in the range of 0x00 to 0x7F and represents 20

the following: 21

— In the case of eOAM_Get_Response eOAMPDUs, the value stored in the requested managed 22

attribute 23

— In the case of eOAM_Set_Request eOAMPDUs, the value to be written into the target managed 24

attribute 25

The structure of a Variable Container TLV shall be as presented in Table 13-82. 26

Table 13-3—Structure of the Variable Container 27

Size

(octets)
Field

(name)
Value Comments

1 Branch
Type

0x00 to 0xFF —

2 Leaf 0x00-00 to 0xFF-FF —

1 Length

0x00

0x01 to 0x7F

0x80 to 0xFF

Value field is 128 octets long.

Value field is 1 to 127 octets long.

Value field is zero octets long, Length

field represents the return code per 13.4.3.

Varies Value Variable

Present only when the value in the

Length field is greater than zero; format

as defined for the branch/leaf code

Variable Containers may contain data of a few common types, as defined below: 28

 Integer: An integer carried in a Variable Container shall be represented in the two’s-complement 1

form, with the Most Significant Octet (MSO) first. Note that Variable Containers are of variable 2

length; as a result, attributes that are integers do not have a fixed width. The source OAM client 3

may suppress leading zero octets of integers. The target OAM client shall accept an integer in a 4

Variable Container of any legal width (1–128 octets). If a Variable Container is smaller (shorter) 5

than the representation used by the target OAM client, the value is extended to match the 6

representation used by the target OAM client as necessary. If the Variable Container is larger than 7

the representation used by the target OAM client, the resulting action on the received value is 8

implementation dependent. 9

 Enumerated value: An enumerated value carried in a Variable Container is a set of values with 10

predefined meanings. Enumerated values always have a fixed length, regardless of the number of 11

trailing zeros—effectively, enumerated values always have the maximum possible size anticipated 12

for the particular managed attribute. Examples of valid enumerated values include (in binary 13

format) 0b0000-0001-1000 or 0b0000-0000-0000. The source OAM client shall not suppress 14

trailing zeros for enumerated values, and the target OAM client shall not add trailing zeros to the 15

received enumerated values. 16

 Sequence list: A sequence list carried in a Variable Container has the form of a series (sequence) 17

of values, typically of the enumerated value type. All elements in the sequence list shall be of the 18

same length. The number of elements in the sequence list shall be determined from the size of the 19

given Variable Container (value of the Length field). 20

 TLVs carrying large values 21

The maximum length of data that can fit into a single Variable Container is equal to 128 octets. Some 22

attribute values may be larger than the 128 octets, requiring a series of TLVs to transfer them between the 23

source OAM client and the target OAM client, using a repeated branch/leaf tuple for the attribute in 24

question. Such a series of TLVs is terminated with a TLV with the same branch/leaf tuple, and a length of 25

zero, to indicate the end of multi-TLV value. 26

The value of such a large attribute is segmented into a number of individual TLVs, where each TLV in 27

such a sequence of TLV carries a fragment of the large attribute and has the size meeting the requirements 28

stipulated in 13.4.1.2.2. As a result, the value of such a large attribute is broken into a number of blocks, 29

each with the size of at most 128 octets, and each such block is then carried in a dedicated TLV. For 30

example, assume that the ONU has 23 MAC addresses stored in the dynamic MAC address table. The OLT 31

requests the current list of MAC addresses learned by the ONU, in response to which the ONU needs to list 32

all such MAC addresses using the respective TLVs. A single TLV can hold at most 21 whole MAC 33

addresses (21 × 6 = 126 octets). In this case the first TLV would carry 21 MAC address, the second TLV 34

would carry the remaining 23−21 = 2 MAC addresses, and this series of TLVs would be followed by a 35

TLV with the same branch/leaf tuple but of zero size to indicate the end of the large value sequence. 36

13.2.2.2 TLVs for 802.3 OAMPDUs 37

 Extended Information TLV 38

The Information OAMPDU defined in IEEE Std 802.3, Clause 57, can contain the Organization Specific 39

Information as Information TLV (IEEE Std 802.3, 57.5.2.3). Presence of this Extended Information TLV in 40

the Information OAMPDU during the OAM discovery process indicates that the OLT or the ONU supports 41

the extended OAM. 42

The format of the Extended Information TLV shall be as specified in Table 13-83 and described in the 43

following text. 44

Table 13-4—Structure of the Extended Information TLV 45

Size

(octets)
Field

(name)
Value

1 Type 0xFE (Organization Specific Information TLV)

1 Length 0x05

3 OUI OUI_A

1 InfoType 0x00

1 Version

This field identifies the version of the eOAM used by this

profile.

Bits [7:4] represent the major version number

Bits [3:0] represent the minor version number

The following values are defined:

0x01: reserved for backward compatibility, same as 0x10

0x02: pre-DPoE OAM, without Certificate Authority support

0x03: pre-DPoE OAM, with Certificate Authority support

0x10: OAM compliant with DPoE-SP-OAMv1.0-I04 and

previous versions

0x11: OAM compliant with DPoE-SP-OAMv1.0-I05 and

subsequent versions of DPoE-SP-OAMv1.0

0x20: OAM compliant with IEEE Std 1904.1-2013 Package A

and DPoE-SP-OAMv2.0-I01 and through DPoE-SP-

OAMv2.0-I05

0x21: OAM compliant with DPoE-SP-OAMv2.0-I06 and

DPoE-SP-OAMv2.0-I07

0x22: OAM compliant with IEEE Std 1904.1-2016, Package A

and DPoE-SP-OAMv2.0-I09 and subsequent versions

Other values are reserved and ignored on reception.

The following fields comprise the Extended Information TLV: 1

a) Type: this field is used to indicate the data type held in the given TLV. In the case of the 2

Extended Information TLV, this field carries the value of 0xFE, according to IEEE Std 802.3, 3

Table 57–6, indicating the Organization Specific Information TLV. 4

b) Length: this field is used to indicate the length of the TLV, expressed in units of octets. 5

c) OUI: this field is used to identify the organization to which the given Information TLV belongs. 6

At least one of the Organization Specific Information TLVs exchanged between the ONU and the 7

OLT during the eOAM discovery process shall be of Extended Information TLV type, containing 8

the OUI_A. 9

d) InfoType: this field is used to identify the subtype of the Extended Information TLV. 10

e) Version: this field is used to indicate the version of the eOAM supported by the given device. 11

The internal format of this field is as follows: aaaa.bbbb (4 bits followed by 4 bits), where “aaaa” 12

represents the major version number, and “bbbb” represents the minor version number. For 13

example, a Version field carrying the value of 0b0010.0000 represents a major version 2, and a 14

minor version 0. 15

 Event Notification TLV 16

The basic structure of the Organization Specific Event TLV shall be as specified in IEEE Std 802.3, 17

57.5.3.5. Specific fields in the Organization Specific Event TLV shall be as shown in Figure 13-8 and 18

specified below. 19

 1

Figure 13-1—Relationship between Organization Specific Event TLV and the 2

Event Notification OAMPDU 3

a) Event Type = 0xFE, according to the encoding of this field as defined in IEEE Std 802.3, Table 4

57–12. 5

b) Event Length. This one-octet field indicates the length (in octets) of this TLV-tuple. 6

c) OUI value, equal to OUI_1904_4. 7

d) Organization Specific Value carries the specific set of event-associated information. 8

Further, the structure of the Organization Specific Value shall be as specified in 9

Table 13-84 and described below. 10

Table 13-5—Internal structure of the Organization Specific Value field 11

Octet(s) Field Notes

1 EventCode

This field identifies the type of alarm that was identified by

the source OAM client. See Table 13-85 for definition of

individual values for the EventCode field. These alarm

codes are grouped into link faults, critical events, and Dying

Gasp alarm types, with code values numbered accordingly.

Only the values listed in the table are supported. Other values

are reserved and ignored on reception.

1 EventRaised

This field indicates whether the given event was raised. The

following values are supported:

0x00: The given event was cleared.

0x01: The given event was raised.

Other values are reserved and ignored on reception.

2 ObjectType
This field identifies the object element generating the alarm in

question.

2 or 4 ObjectInstance
This field identifies the object element instance generating the

alarm in question.

— ObjectType field identifies the object that generated the given event, as defined in 12

14.4.1.1.1. Other values of the ObjectType are reserved and ignored on reception. 13

— ObjectInstance field identifies the specific instance of the object that generated the 14

given event, as defined in 14.4.1.1.2. 15

Destination Address

Source Address

Length/Type

Subtype

Flags

Code=0x01

Data/Pad

FCS

Octets

6

6

2

1

2

1

42~1496

4

Sequence Number

Organization Specific

Event TLV #1

Octets

2

n

Event TLV #240

Event Type＝0xFE

Event Length

OUI = OUI_A

Organization
Specific Value

1

1

3

m

Table 13-6—Code points for the EventCode field 1

Event Code Value Description

Link Fault Alarms

LoS 11
Loss of received optical power by the transceiver (ONU

EPON port). Link down on Ethernet PHY (ONU UNI port).

Key Exchange Failure 12
ONU did not observe a switch to a new key after key

exchange.

Critical Event Alarms

Port Disabled 21 Ethernet port is disabled by management action.

Dying Gasp Alarms

Power Failure 41 Loss of power at the ONU (Dying Gasp).

Other Alarms

Statistics Alarm 81 Statistic has crossed defined alarm thresholds.

ONU Busy 82
ONU is busy and unable to acknowledge or process further

OAM until alarm clears.

MAC Table Overflow 83 ONU MAC Table has seen more addresses than it can hold.

PON_IF_Switch 84 PON interface on the ONU was switched to backup.

An ONU may transmit any alarm via any L-ONU, i.e., on any bi-directional LLID registered at that ONU. 2

13.2.2.2.2.1 LoS (0x11) 3

For the PON port, a loss of signal (LoS) condition is detected by lack of incoming optical power or loss of 4

clock and data recovery lock to the downstream bit clock. The transceiver status monitoring for the ONU 5

and the OLT is as specified in 9.1.3. On any of the UNI ports, the LoS condition corresponds to the Link 6

Down condition detected by the UNI port PHY. 7

13.2.2.2.2.2 Key Exchange Failure (0x12) 8

The Key Exchange Failure alarm indicates that a scheduled key exchange has failed. Encryption continues 9

with the previous key for another key exchange interval. Another key exchange is attempted at the next key 10

exchange time. 11

13.2.2.2.2.3 Port Disabled (0x21) 12

The Port Disabled event indicates that one of the ONU ports has been disabled by management action. If 13

the PON port is disabled, then this event notification is not transmitted, and this alarm is visible only 14

locally on the ONU. 15

13.2.2.2.2.4 Power Failure (0x41) 16

A Power Failure alarm indicates that the ONU lost power and is imminently going to be removed from the 17

EPON. An ONU makes every attempt to send this Event Notification TLV when it detects loss of power. 18

An ONU may not be able to actually send this Event Notification TLV if the required transmission grants 19

are not allocated by the OLT before the ONU runs out of power. 20

13.2.2.2.2.5 Statistics Alarm (0x81) 21

The Statistics Alarm indicates a crossing of predefined thresholds on a specific statistic, as indicated by the 22

Alarm TLV, as defined in Table 13-86. Typically, these thresholds would be set for counters for error 23

conditions such as CRC errors. 24

Table 13-7—Alarm TLV structure 25

Size

(octets)

Field

(name)
Value

1 Branch Branch of statistic that crossed threshold

2 Leaf Leaf of statistic that crossed threshold

13.2.2.2.2.6 ONU Busy (0x82) 1

The ONU Busy alarm may be raised by an ONU to inform the OLT that it has been busy for an extended 2

period and may have problems responding to any further OAM requests in the usual timely fashion. 3

13.2.2.2.2.7 MAC Table Overflow (0x83) 4

The MAC Table Overflow alarm is raised by an ONU to inform the OLT that an ingress MAC address has 5

not been learned because the total number of MAC addresses has been exceeded. For example, if the ONU 6

was provisioned to allow four MAC addresses on a particular UNI port, then the first four addresses seen 7

would be learned; the fifth address would cause this alarm to be raised. 8

13.2.2.2.2.8 PON_IF_Switch (0x84) 9

The PON_IF_Switch alarm is raised by the ONU to inform the OLT that the PON interface on the ONU 10

was switched from the active interface to backup interface, according to the tree protection mechanism 11

defined in 9.3.4. 12

13.2.2.3 Multipart eOAMPDU response sequence 13

In some cases, responses to a single eOAMPDU transmitted by the OLT, received from the ONU, may not 14

fit into a single eOAMPDU, especially when reading values from tables with the total size exceeding the 15

payload of an eOAMPDU, e.g., MAC address tables. In this case, the ONU splits its response across 16

multiple eOAMPDUs. The ONU shall inform the OLT that the complete response to the original request 17

was not sent in a single eOAMPDU, but rather in a series of eOAMPDUs. In addition, the OLT shall be 18

able to detect any missing eOAMPDUs in the series of eOAMPDUs comprising a complete response from 19

the ONU. 20

To indicate that additional eOAMPDUs comprising a complete response from the ONU are forthcoming, 21

the ONU shall add an instance of the Sequence TLV (0xDB/0x00-01) to the response eOAMPDU to denote 22

the response sequence. The ONU should not add the Sequence TLV (0xDB/0x00-01) to an eOAMPDU not 23

being part of the response sequence. 24

To send a multiple part response requiring N eOAMPDUs, the ONU does the following: 25

 For the first eOAMPDU in the response sequence: 26

— Set the value in the Sequence# field to 0x00. 27

 For the last eOAMPDU in the response sequence: 28

— Set bit 15 in the Sequence# field to 1. 29

 For all eOAMPDUs in the response sequence: 30

— Add the Sequence TLV (0xDB/0x00-01) to the eOAMPDU. 31

— Increment the value of the Sequence# field. 32

Figure 13-9 presents examples of various eOAMPDU exchange sequences. 33

 1

Figure 13-2—Example of various eOAMPDU exchange sequences 2

13.3 eOAMPDU 3

Most management functions required for the proper operation of EPON are carried out through the process 4

of reading and writing individual attributes of the managed objects hosted in the ONU. As an example, 5

setting the operating speed for an UNI port requires writing an appropriate value into the speed attribute of 6

the proper port object. Likewise, information can be read from the respective managed objects hosted on 7

the ONU using dedicated eOAMPDUs. 8

It is also possible to cause the ONU to perform certain actions, e.g., disable specific UNI ports, reset 9

counters, by setting appropriate values in the stored managed objects. 10

13.3.1 eOAMPDU codes 11

eOAMPDUs specified for this profile shall be as defined in Table 13-87. These eOAMPDUs use the 12

Organization Specific Extension mechanisms defined in IEEE Std 802.3, Clause 57. Other values are 13

reserved and ignored on reception. 14

 15

Table 13-8—eOAMPDUs and assignment of Opcode values 16

Opcode eOAMPDUs Defined in
0x00 Reserved, ignored on reception

0x01 eOAM_Get_Request 13.4.2.2

0x02 eOAM_Get_Response 13.2.3.3

0x03 eOAM_Set_Request 13.4.2.4

0x04 eOAM_Set_Response 13.4.2.5

0x05 Reserved, ignored on reception

0x06 Reserved, ignored on reception

0x07 Reserved, ignored on reception

0x08 eOAM_KeyExchange 13.4.2.11

OLT Request

ONU Response

OLT Request
OLT Request

OLT Request

ONU Response

Sequence# = 0x80-00

ONU Response

Sequence# = 0x00-00

ONU Response

Sequence# = 0x80-01

ONU Response

Sequence# = 0x00-00

ONU Response

Sequence# = 0x00-01

ONU Response

Sequence# = 0x00-00

+ N-2

ONU Response

Sequence# = 0x80-00

+ N-1

...

Single part message Two part message N part message

Single part message

with

optional TLV (inefficient)

Opcode eOAMPDUs Defined in
0x09 eOAM_Software 13.4.2.10

0x0A Reserved, ignored on reception

0x0B Reserved, ignored on reception

0x0C Reserved, ignored on reception

0xFC eOAM_Early_WakeUpOLT 13.4.2.12

0xFD eOAM_Early_WakeUpONU 13.4.2.13

0xFE eOAM_Sleep_Allowed 13.4.2.14

13.3.2 eOAM_Get_Request eOAMPDU 1

The eOAM_Get_Request eOAMPDU permits the management system to request the value of one or more 2

attributes hosted on the ONU, both defined in IEEE Std 802.3, Clause 30, and defined by this profile. The 3

Data field of the eOAM_Get_Request eOAMPDU contains a series of Variable Descriptors and Object 4

Context TLVs, if needed. The size (and presence) of the Pad field depends on the number of individual 5

Variable Descriptors and Object Context TLVs. The structure of the Variable Descriptor is defined in 6

13.4.1.2.1. The structure of the Object Context TLV is defined in 14.4.1.1. 7

Functionally, the eOAM_Get_Request eOAMPDU is identical to the Variable Request OAMPDU as 8

defined in IEEE Std 802.3, 57.4.3.3. 9

The structure of the eOAM_Get_Request eOAMPDU shall be as specified in Table 13-88 and as described 10

in more detail below. 11

Table 13-9—Structure of the eOAM_Get_Request eOAMPDU 12

Size

(octets)
Field

(name)
Value

21 eOAMPDU header Varies

1 Opcode 0x01

Varies Data Varies, a series of Variable Descriptors and Object Context TLV

Varies Pad 0x00-…-00

4 FCS Varies

eOAMPDU header, Opcode, Data, Pad, and FCS fields are defined in 13.4.1.1. 13

13.3.3 eOAM_Get_Response eOAMPDU 14

The eOAM_Get_Response eOAMPDU permits the ONU to respond to the eOAM_Get_Request 15

eOAMPDU and contains a series of Variable Containers and Object Context TLVs, if needed.. The size 16

(and presence) of the Pad field depends on the number of individual Variable Containers and Object 17

Context TLVs. Each Variable Container may carry the value of the requested variable or a return code (per 18

13.4.3) if the variable reading process fails for any reason. The structure of the Variable Container is 19

defined in 13.4.1.2.2. The structure of the Object Context TLV is defined in 14.4.1.1. 20

Functionally, the eOAM_Get_Response eOAMPDU is identical to the Variable Response OAMPDU as 21

defined in IEEE Std 802.3, 57.4.3.4. 22

The structure of the eOAM_Get_Response eOAMPDU shall be as specified in Table 13-89 and as 23

described in more detail below. 24

Table 13-10—Structure of the eOAM_Get_Response eOAMPDU 25

Size

(octets)
Field

(name)
Value

21 eOAMPDU header Varies

Size

(octets)
Field

(name)
Value

1 Opcode 0x02

Varies Data Varies, a series of Variable Containers and Object Context TLVs

Varies Pad 0x00-…-00

4 FCS Varies

eOAMPDU header, Opcode, Data, Pad, and FCS fields are defined in 13.4.1.1. 1

The size of individual Variable Container(s) ranges between 5 and 132 octets, with the maximum size 2

limited by the Length field encoding used in the Variable Container, as defined in 13.4.1.2.2. 3

13.3.4 eOAM_Set_Request eOAMPDU 4

The eOAM_Set_Request eOAMPDU permits the management system to set the value of one or more 5

attributes hosted on the ONU, both defined in IEEE Std 802.3, Clause 30, and defined by this profile. The 6

Data field of the eOAM_Set_Request eOAMPDU contains a series of Variable Containers and Object 7

Context TLVs, if needed. The size (and presence) of the Pad field depends on the number of individual 8

Variable Containers and Object Context TLVs. The structure of the Variable Container is defined in 9

13.4.1.2.2. The structure of the Object Context TLV is defined in 14.4.1.1. 10

The eOAM_Set_Request eOAMPDU does not have a functional equivalent in the OAMPDU defined in 11

IEEE Std 802.3, Clause 57. IEEE 802.3 OAM does not support operations related to setting attributes and 12

actions. 13

The structure of the eOAM_Set_Request eOAMPDU shall be as specified in Table 13-90 and as described 14

in more detail below. 15

Table 13-11—Structure of the eOAM_Set_Request eOAMPDU 16

Size

(octets)
Field

(name)
Value

21 eOAMPDU header Varies

1 Opcode 0x03

Varies Data
Varies, a series of M Variable Containers and Object Context

TLVs

Varies Pad 0x00-…-00

4 FCS Varies

eOAMPDU header, Opcode, Data, Pad, and FCS fields are defined in 13.4.1.1. 17

Each Variable Container included in the eOAM_Set_Request eOAMPDU may map into an attribute (e.g., 18

for branches 0x07 or 0xDB) or an action (e.g., for branches 0x09 or 0xDD), as indicated by the 19

Branch/Leaf 2-tuple. The Value field provides a new value to be assigned to the target attribute or a 20

parameter for the target action. 21

Actions instruct the target eOAM client to execute a procedure, e.g., rebooting the ONU. The management 22

actions specified in IEEE Std 802.3, Clause 30, are not supported in the IEEE 802.3 (Clause 57) 23

OAMPDUs. The OAM extensions specified for this profile allow the source eOAM client to request 24

execution of both actions defined by IEEE Std 802.3, Clause 30, and actions specified in this profile. Some 25

of the actions specified in this profile are expressed using the Variable Container, where the parameters for 26

this action are carried in the body of the Variable Container. Actions that do not have parameters are 27

represented with a Variable Container of zero length (Length value of 0x80). 28

13.3.5 eOAM_Set_Response eOAMPDU 1

The eOAM_Set_Response eOAMPDU permits the ONU to respond to management requests (read 2

variable[s], set variable[s], or perform action[s]) and contains a series of Variable Containers and Object 3

Context TLVs, if needed. The size (and presence) of the Pad field depends on the number of individual 4

Variable Containers and Object Context TLVs. Each Variable Container carries a return code (see 13.4.3) 5

together with the Branch/Leaf identification of the target attribute/action. The structure of the Variable 6

Container is defined in 13.4.1.2.2. The structure of the Object Context TLV is defined in 14.4.1.1. 7

The structure of the eOAM_Set_Response eOAMPDU shall be as specified in Table 13-91 and as described 8

in more detail below. 9

Table 13-12—Structure of the eOAM_Set_Response eOAMPDU 10

Size

(octets)
Field

(name)
Value

21 eOAMPDU header Varies

1 Opcode 0x04

Varies Data
Varies, a series of Variable Containers and Object Context

TLVs

Varies Pad 0x00-…-00

4 FCS Varies

eOAMPDU header, Opcode, Data, Pad, and FCS fields are defined in 13.4.1.1. 11

13.3.6 eOAM_Software eOAMPDU 12

This subclause provides the definition of the generic eOAM_Software eOAMPDU, together with the 13

specific eOAMPDU subtypes required to implement the software update mechanism specified for this 14

profile. The software update mechanism for this profile is specified in 12.3.3. 15

13.3.6.1 eOAM_Software eOAMPDU structure 16

The eOAM_Software eOAMPDU is a specific type of the generic eOAMPDU, as defined in Table 13-8. 17

The generic structure of the eOAM_Software eOAMPDU shall be as presented in Table 13-13 and as 18

described in more detail below. 19

Table 13-13—Structure of the eOAM_Software eOAMPDU 20

Size

(octets)
Field

(name)
Value + notes

21 eOAMPDU header Varies

1 Opcode 0x09

1 FileTransferOpcode
Indicates the type of the eOAM_Software eOAMPDU, per Table

13-14.

Varies FileTransferBody

Carries the actual data portion of the eOAM_Software

eOAMPDU, depending on the value of the

FileTransferOpcode field.

Varies Pad (optional) 0x00-…-00

4 FCS Varies

Table 13-14—Values of the FileTransferOpcode field 21

FileTransferOpcode value Value

Reserved 0x00

eOAM_Software_WriteRequest 0x01

eOAM_Software_FileTransferData 0x02

eOAM_Software_FileTransferAck 0x03

a) eOAMPDU header, as defined in 13.4.1.1. 1

b) Opcode, as defined in 13.4.1.1. This field carries the value of 0x09 for eOAM_Software 2

eOAMPDU. 3

c) FileTransferOpcode indicates the type of the eOAM_Software eOAMPDU. Three types of 4

eOAM_Software eOAMPDUs are defined for this profile: 5

0x01: eOAM_Software_WriteRequest eOAMPDU is used by the OLT to initiate the ONU 6

software image transfer process. 7

0x02: eOAM_Software_FileTransferData eOAMPDU is used by the OLT to transfer a 8

fragment of the given ONU software image between the OLT and the ONU. 9

0x03: eOAM_Software_FileTransferAck eOAMPDU is used by the ONU to provide a return 10

code to the OLT, indicating the current status of the ONU software image transfer process. 11

Other values are reserved and ignored on reception. 12

d) FileTransferBody carries the actual information related to the given software upgrade 13

process. There are several supported messages types, as specified by the 14

FileTransferOpcode field. 15

Individual eOAM_Software eOAMPDUs (eOAM_Software_WriteRequest eOAMPDU, 16

eOAM_Software_FileTransferData eOAMPDU, and eOAM_Software_FileTransferAck 17

eOAMPDU) are further defined in the following subclauses. 18

The size of this field is variable and depends on the eOAMPDU subtype as indicated in the 19

Type field. 20

e) Pad, as defined in 13.4.1.1. The length of this field is variable and depends on the size of the total 21

size of the FileTransferOpcode and FileTransferBody fields. 22

f) FCS, as defined in 13.4.1.1. 23

13.3.6.2 eOAM_Software_WriteRequest eOAMPDU 24

The eOAM_Software_WriteRequest eOAMPDUs is used by the OLT to initiate a file transfer from the OLT 25

to the selected ONU and deliver the name of the ONU software filename to be stored in the 26

aOnuFwFileName (0xDB/0x01-0E) attribute. After this eOAMPDU is received, the ONU prepares for the 27

reception of the software image. 28

The structure of the eOAM_Software_WriteRequest eOAMPDU shall be as specified in Table 13-15 and as 29

described in more detail below. 30

Table 13-15—Structure of the eOAM_Software_WriteRequest eOAMPDU 31

Size

(octets) Field Value + notes

21 eOAMPDU header Varies

1 Opcode 0x09

1 FileTransferOpcode 0x01

Size

(octets) Field Value + notes

Varies FileName null-terminated ASCII string

Varies Pad (optional) 0x00-…-00

4 FCS Varies

a) eOAMPDU header, Opcode, FileTransferOpcode, Pad, and FCS fields are defined in 1

13.4.2.10.1. 2

b) FileTransferOpcode identifies the eOAM_Software_WriteRequest eOAMPDU. 3

c) FileName represents the ONU software filename, to be stored at the ONU in the 4

aOnuFwFileName (0xDB/0x01-0E) attribute. 5

13.3.6.3 eOAM_Software_FileTransferData eOAMPDU 6

The eOAM_Software_FileTransferData eOAMPDUs are used to carry individual fragments of the ONU 7

software image file. Each eOAMPDU carries the block number (BlockNumber field) and data fragment 8

size indicator (BlockWidth field), specifying the number of file data octets to follow. 9

The structure of the eOAM_Software_FileTransferData eOAMPDU shall be as specified in Table 13-16 10

and as described in more detail below. 11

Table 13-16—Structure of the eOAM_Software_FileTransferData eOAMPDU 12

Size

(octets)
Field

(name)
Value + notes

21 eOAMPDU header Varies

1 Opcode 0x09

1 FileTransferOpcode 0x02

2 BlockNumber
This field reflects the sequential number of the current ONU

software image fragment carried in this eOAMPDU.

2 BlockWidth

This field reflects the size of the BlockData field. Its value is

expressed in units of octets. When the value of this field is equal

to 0x00-00, this eOAMPDU is used to keep the ONU software

image transfer process alive.

Varies BlockData
This field carries the actual fragment of the ONU software

image.

Varies Pad (optional) 0x00-…-00

4 FCS Varies

a) eOAMPDU header, Opcode, FileTransferOpcode, Pad, and FCS fields are defined in 13

13.4.2.10.1. 14

b) FileTransferOpcode identifies the eOAM_Software_FileTransferData eOAMPDU. 15

c) BlockNumber contains the sequential number of the current ONU software image fragment 16

carried in the eOAM_Software_FileTransferData eOAMPDU. 17

d) BlockWidth represents the size of BlockData. Its value is expressed in units of octets. When 18

the eOAM_Software_FileTransferData eOAMPDU is used to keep the ONU software image 19

transfer process alive (keep-alive message), the value of this field is equal to 0x00-00. 20

e) BlockData carries the actual fragment of the ONU software image. 21

13.3.6.4 eOAM_Software_FileTransferAck eOAMPDU 1

The eOAM_Software_FileTransferAck eOAMPDU is used by the ONU to indicate the current status of the 2

ONU software image transfer process. Each eOAMPDU of this type carries the block number 3

(BlockNumber field) and the response code (ResponseCode field). The block number indicates the 4

number of the next ONU software image data block expected by the ONU. 5

The eOAM_Software_FileTransferAck eOAMPDU is also used by the OLT to indicate the end of the ONU 6

software image file. In this case, the eOAM_Software_FileTransferAck eOAMPDU carries the 7

BlockNumber value of 0x00-00, together with the ResponseCode value indicating the end of the 8

transfer process. 9

The structure of the eOAM_Software_FileTransferAck eOAMPDU shall be as specified in Table 13-17 and 10

as described in more detail below. 11

Table 13-17—Structure of the eOAM_Software_FileTransferAck eOAMPDU 12

Size

(octets)
Field

(name)
Value + notes

21 eOAMPDU header Varies

1 Opcode 0x09

1 FileTransferOpcode 0x03

2 BlockNumber
This field carries the sequential number of the software image

fragment (block) that the ONU expects to receive next.

1 ResponseCode
This field carries the response code generated by the sender

entity (either ONU or OLT).

Varies Pad (optional) 0x00-…-00

4 FCS Varies

a) eOAMPDU header, Opcode, FileTransferOpcode, Pad, and FCS fields are defined in 13

13.4.2.10.1. 14

b) FileTransferOpcode identifies the eOAM_Software_FileTransferData eOAMPDU. 15

c) BlockNumber contains the number of the software image block, as described in 13.4.2.10.3. 16

d) ResponseCode carries the response code, as defined in Table 13-101. Only the values specified 17

in Table 13-18 are allowed. Other values are reserved and cause the 18

eOAM_Software_FileTransferAck eOAMPDU to be ignored. 19

Table 13-18—Response Code values carried in ResponseCode field 20

Response Code Value Meaning

OK 0x00 No errors.

Undefined 0x01 Unknown error, or one not covered elsewhere.

Not Found 0x02 Read requested file that is not available.

No Access 0x03 Access permissions do not allow the requested read/write.

Full 0x04 Storage is full, and cannot hold the written file.

Illegal Operation 0x05 Cannot perform requested operation in current state.

Unknown ID 0x06 Requested file ID is not supported by this device.

Bad Block 0x07 Block received in error.

Timeout 0x08 No block received before timer expiration.

Busy 0x09 Cannot perform requested action due to other activity.

Incompatible File 0x0A
Received file is incompatible with this device. File

incompatibility is determined by the device vendor.

Response Code Value Meaning

Corrupted File 0x0B
File was received corrupted and is unusable by this device.

File integrity is determined by the device vendor.

13.3.7 eOAM_KeyExchange eOAMPDU 1

The eOAM_KeyExchange eOAMPDU is used to implement the key exchange protocol between the OLT 2

and the ONU. 3

13.3.7.1 eOAM_KeyExchange eOAMPDU structure 4

The eOAM_KeyExchange eOAMPDU is a specific type of the generic eOAMPDU, as defined in 5

Table 13-8. 6

The structure of the eOAM_KeyExchange eOAMPDU shall be as presented in Table 13-19 and as 7

described in more detail below. 8

Table 13-19—Structure of the eOAM_KeyExchange eOAMPDU 9

Size

(octets)
Field

(name)
Value + notes

21 eOAMPDU header Varies

1 Opcode 0x08

1 KeyExchangeOpcode Indicates the type of the eOAM_KeyExchange eOAMPDU.

Varies KeyExchangeBody

Carries the actual data portion of the eOAM_KeyExchange

eOAMPDU, depending on the value of the Key Exchange

Opcode field.

Varies Pad (optional) 0x00-…-00

4 FCS Varies

a) eOAMPDU header, as defined in 13.4.1.1. 10

b) Opcode, as defined in 13.4.1.1. This field carries the value of 0x08 for eOAM_KeyExchange 11

eOAMPDU. 12

c) KeyExchangeOpcode indicates the type of the eOAM_KeyExchange eOAMPDU. Two types 13

of eOAM_KeyExchange eOAMPDUs are defined for this profile: 14

0x00: eOAM_KeyExchange_Assign eOAMPDU is used to assign the encryption key. 15

0x01: eOAM_KeyExchange_ACK eOAMPDU is used to acknowledge the assignment of the 16

encryption key. 17

Other values are reserved and ignored on reception. 18

d) KeyExchangeBody carries the actual information related key exchange process. There are 19

several supported messages types, as specified by the Key Exchange Opcode field. 20

Individual eOAM_KeyExchange eOAMPDUs (eOAM_KeyExchange_Assign and 21

eOAM_KeyExchange_ACK eOAMPDU) are further defined in the following subclauses. 22

The size of this field is variable and depends on the eOAMPDU subtype as indicated in the Type 23

field. 24

e) Pad, as defined in 13.4.1.1. The length of this field is variable and depends on the size of the total 25

size of the KeyExchangeOpcode and KeyExchangeBody fields. 26

f) FCS, as defined in 13.4.1.1. 27

13.3.7.2 eOAM_KeyExchange_Assign eOAMPDU 1

The eOAM_KeyExchange_Assign eOAMPDU is used to assign the new encryption key to the link peer. 2

The structure of the eOAM_KeyExchange_Assign eOAMPDU shall be as specified in Table 13-20 and as 3

described in more detail below. 4

Table 13-20—Structure of the eOAM_KeyExchange_Assign eOAMPDU 5

Size

(octets)
Field

(name)
Value + notes

21 eOAMPDU header Varies

1 Opcode 0x08

1 KeyExchangeOpcode 0x00

2 LLID

This field carries the value of LLID (as in LLID carried in the

frame preamble) for L-ONU to which this eOAMPDU applies.

The supported range of values is 0x00-00 to 0x7F-FF.

Other values are reserved and ignored on reception.

1 KeyNumber

This field indicates the key exchange phase. The supported

range of value is 0x00 to 0x01.

Other values are reserved and ignored on reception

1 KeyLength
This field indicates the length of the encryption key. The value

is expressed in units of octets.

Varies Key
This field carries the actual encryption key of the length

indicates by the Key Length field.

Varies Pad (optional) 0x00-…-00

4 FCS Varies

a) eOAMPDU header, Opcode, Pad, and FCS fields are defined in 13.4.1.1. 6

b) KeyExchangeOpcode identifies the eOAM_KeyExchange_Assign eOAMPDU. 7

c) LLID indicates the value of L-ONU LLID to which this eOAM_KeyExchange_Assign eOAMPDU 8

refers. 9

d) KeyNumber indicates the key exchange phase, indicating to the receiving link peer whether the 10

current or previous key is to be used. 11

e) KeyLength provides information on the length of the actual encryption key, expressed in units 12

of octets. 13

f) Key carries the actual encryption key. 14

13.3.7.3 eOAM_KeyExchange_ACK eOAMPDU 15

The eOAM_KeyExchange_ACK eOAMPDU is used by the link peer to confirm the assignment of the new 16

encryption key. 17

The structure of the eOAM_KeyExchange_ACK eOAMPDU shall be as specified in Table 13-21 and as 18

described in more detail below. 19

Table 13-21—Structure of the eOAM_KeyExchange_ACK eOAMPDU 20

Size

(octets)
Field

(name)
Value + notes

21 eOAMPDU header Varies

1 Opcode 0x08

1 KeyExchangeOpcode 0x01

Size

(octets)
Field

(name)
Value + notes

2 LLID

This field carries the value of LLID (as in LLID carried in the

frame preamble) for L-ONU to which this eOAMPDU applies.

The supported range of values is 0x00-00 to 0x7F-FF.

Other values are reserved and ignored on reception.

1 KeyNumber

This field indicates the key exchange phase. The supported

range of value is 0x00 to 0x01.

Other values are reserved and ignored on reception.

Varies Pad (optional) 0x00-…-00

4 FCS Varies

a) eOAMPDU header, Opcode, Pad, and FCS fields are defined in 13.4.1.1. 1

b) KeyExchangeOpcode identifies the eOAM_KeyExchange_ACK eOAMPDU. 2

c) LLID indicates the value of L-ONU LLID to which this eOAM_KeyExchange_ACK eOAMPDU 3

refers. 4

d) KeyNumber indicates the key exchange phase, indicating to the receiving link peer whether the 5

current or previous key is to be used. 6

13.3.8 eOAM_Early_WakeUpOLT eOAMPDU 7

The OLT with enabled support for early wake-up function sends the eOAM_Early_WakeUpOLT 8

eOAMPDU to request the ONU to leave the sleep state and enter the active state. 9

The structure of the eOAM_Early_WakeUpOLT eOAMPDU shall be as specified in Table 13-22 and as 10

described in more detail below. 11

Table 13-22—Structure of the eOAM_Early_WakeUpOLT eOAMPDU 12

Size

(octets)
Field

(name)
Value

21 eOAMPDU header Varies

1 Opcode 0xFC

38 Pad 0x00-…-00

4 FCS Varies

eOAMPDU header, Opcode, Pad, and FCS fields are defined in 13.4.1.1. 13

13.3.9 eOAM_Early_WakeUpONU eOAMPDU 14

The ONU sends the eOAM_Early_WakeUpONU eOAMPDU to indicate to the OLT that it left the sleep 15

state and entered the active state. This information allows the OLT to enable the downstream queues and 16

resume downstream transmission to this particular ONU. 17

The structure of the eOAM_Early_WakeUpONU eOAMPDU shall be as specified in Table 13-23 and as 18

described in more detail below. 19

Table 13-23—Structure of the eOAM_Early_WakeUpONU eOAMPDU 20

Size

(octets)
Field

(name)
Value

21 eOAMPDU header Varies

1 Opcode 0xFD

38 Pad 0x00-…-00

Size

(octets)
Field

(name)
Value

4 FCS Varies

eOAMPDU header, Opcode, Pad, and FCS fields are defined in 13.4.1.1. 1

13.3.10 eOAM_Sleep_Allowed eOAMPDU 2

The eOAM_Sleep_Allowed eOAMPDU is used by the OLT to request the ONU to enter the specified sleep 3

mode (indicated by the SleepMode field) for a specific duration of time (indicated by the 4

SleepDuration field). 5

The structure of the eOAM_Sleep_Allowed eOAMPDU shall be as specified in Table 13-24. 6

Table 13-24—Structure of the eOAM_Sleep_Allowed eOAMPDU 7

Size

(octets)
Field

(name)
Value

21 eOAMPDU header Varies

1 Opcode 0xFE

1 SleepMode Sleep mode requested by the OLT

4 SleepDuration The duration of the sleep state, expressed in units of time quanta

Varies Pad 0x00-…-00

4 FCS Varies

eOAMPDU header, Opcode, Pad, and FCS fields are defined in 13.4.1.1. 8

13.4 eOAMPDU return codes 9

The eOAMPDU generated by the ONU in response to OLT-side query eOAMPDU may carry return codes 10

when the Length field value in the Variable Container is in the range of 0x80 to 0xFF. Specific return 11

codes required for compliance with this profile shall be as specified in Table 13-25. Other values are 12

reserved and ignored on reception. 13

Per the definition of the Variable Container (see 13.4.1.2.2), when bit 7 in the Length field is set, the 14

Value field is not present in the Variable Container. 15

Table 13-25—Return codes 16

Code Name Description

0x80 No Error The operation was successfully completed.

0x81 Too Long Length of result exceeded eOAMPDU data field available.

0x86 Bad Parameters Parameters for the requested action fail error checking.

0x87 No Resources
The device does not currently have the resources (table

entries, memory, etc.) to perform the requested action.

0x88 System Busy
The device is not currently in the proper state to perform the

requested action.

0xA0 Undetermined Error Unknown or unlisted attribute error.

0xA1 Unsupported An attribute requested is not supported on this device.

0xA2 May Be Corrupted The value of an attribute counter may be invalid due to reset.

0xA3 Hardware Failure
An attribute hardware error prevented the operation from

completing.

0xA4 Overflow The requested attribute experienced overflow error.

NOTESpecific return codes may be carried in either eOAM_Set_Response eOAMPDU or eOAM_Get_Response 1
eOAMPDU. 2

The OLT at its own discretion may send multiple TLVs in a single eOAM_Set_Request eOAMPDU or 3

eOAM_Get_Request eOAMPDU, covering multiple attributes and/or actions. 4

The ONU shall provide exactly one TLV with the return code for each attribute/action TLV included in the 5

received eOAM_Set_Request eOAMPDU. The ONU shall provide either exactly one TLV with the return 6

code or at least one TLV with the value of the requested attribute for each attribute TLV included in the 7

received eOAM_Get_Request eOAMPDU. The number of eOAM_Set_Response or eOAM_Get_Response 8

eOAMPDUs generated by the ONU depends on the number of response TLVs generated by the ONU in 9

response to attribute/action TLVs in the received eOAM_Set_Request or eOAM_Get_Request eOAMPDU. 10

If a TLV in the eOAM_Set_Request eOAMPDU requires the accompanying Object Context TLV, the return 11

code in the eOAM_Set_Response eOAMPDU shall be preceded by the same Object Context TLV. If the 12

series of return codes to the given TLVs in the eOAM_Set_Request eOAMPDU does not fit into one 13

eOAM_Set_Response eOAMPDU, the remaining part of the series of return codes shall be preceded by the 14

appropriate Object Context TLV. 15

