
Page | 1

13 Extended OAM for Nx25G-EPON

13.1 Introduction

The EPON system supports all OAM functions as specified in IEEE Std 802.3, Clause 57, and an eOAM-
based management suite providing the following functions and features:

 eOAM device discovery and device capability discovery

 Querying and setting DBA-related parameters, including the format of REPORT MPCPDU and
associated queue structures

 Querying and setting QoS-related parameters, including flow marking, cataloguing, classification
rules, etc.

 Configuration of service ports and their associated management

 Configuration and management of VLANs

 Configuration of multicast flows and associated management parameters

 Performing management actions on the ONU devices and subsystems, including port status
control, ONU device status verification, etc.

 Software upgrade process that allows operators to remotely modify the software loaded on the
ONU.

13.2 Requirements

13.2.1 Frame size requirements

The eOAMPDU supports the maximum frame size with a payload of 1500 octets. The size of OAMPDUs
is specified in IEEE Std 802.3, 57A.2.

13.2.2 Frame rate requirements

The maximum combined frame rate for the IEEE 802.3 (Clause 57) OAMPDUs and eOAMPDUs per ONU
is configurable, as specified in IEEE Std 802.3, Clause 57 and 57A.2. The default frame rate of 10
frames/sec may be changed using the aLlidOamFrameRate (0xDB/0x00-0D) attribute (see 14.4.1.11).

13.2.3 Timing requirements

Some eOAMPDUs require a response from the ONU. The ONU shall generate an eOAM_Get_Response or
eOAM_Set_Response eOAMPDU within 1 second of the reception of the corresponding
eOAM_Get_Request or eOAM_Set_Request eOAMPDU from the OLT. This requirement covers all types
of management requests issued by the OLT for the specific ONU: reading data from specific variable(s),
setting values to specific variable(s), performing indicated action(s). The OLT may discard all ONU
responses received after the expiration of the 1-second window without processing.

If an ONU cannot respond to the OLT request before the expiration of 1-second window, the ONU shall
generate the ONU Busy alarm (see 13.4.4.2.6). The reception of the ONU Busy alarm at the OLT
represents a non-critical abnormality. The handling of this condition is implementation specific. The raise
of the ONU Busy alarm is generally not a reason to deregister that ONU.

Page | 2

13.2.4 Logical link requirements

An ONU shall transmit all OAMPDUs in envelopes tagged with Management Link ID (MLID) that was
assigned to the ONU during the MPCP registration (i.e., the primary MLID).

The ONU shall be able to receive OAMPDUs in evelopes tagged with either the primary MLID or any
additional unidirectional MLID assigned to the ONU via the acConfigLlid (0xDD/0x01-20) management
action (see 14.6.2.8).

13.2.5 Virtual Link Control support

An ONU may optionally support IEEE Std 1904.2 Virtual Link Control (VLC), which allows OAM
management messages to be carried over VLC tunnels. An IEEE Std 1904.2 compliant ONU may receive
OAM messages as native OAMPDUs and eOAMPDUs or as VLCPDUs with subtype SUBTYPE_OAM. If
the ONU receives an OAM request as an OAMPDU, it shall reply with an OAMPDU OAM response
message. If the ONU receives an OAM request as an VLCPDU, it shall generate OAM reponse as
VLCPDU as well. In the latter case, the VLCPDU destination address shall be equal to the source address
in the received VLCPDU OAM request.

To initiate the OAM discovery, the IEEE Std 1904.2-compliant ONU waits for the Information TLV from
the OLT first. If that TLV is received in an OAMPDU, the ONU transmits its own Information TLVs
(including the Extended Information TLVs) also using an OAMPDU. Otherwise, if the Information TLV is
received from the OLT in a VLCPDU, the ONU transmits its Information TLVs in an VLCPDUs as well.

The ONU shall send the OAM event notification messages using the same PDU type as was used by the
last OAM message it received from the OLT.

The ONU shall transmit all VLCPDUs in envelopes with MLID tag.

13.3 Device discovery and capability discovery

13.3.1 MPCP/OAM discovery process

Figure 13-1 shows the relationship between the process of registration, initialization, and negotiation in
EPON prior to establishing the data plane connectivity. First, the MPCP discovery and registration process
is executed, as defined in IEEE Std 802.3ca, 144.3.7. Next, the process of OAM discovery, as defined in
IEEE Std 802.3, Clause 57, and eOAM discovery, as defined in the following subclauses, is executed.

Page | 3

Figure 13-1—MPCP/OAM discovery process

13.3.2 eOAM discovery process

The eOAM discovery process in the EPON is used to identify whether the given connected ONU supports
the specific subtype of the Organization Specific OAM extensions (as identified by the OUI) and further to
identify the capabilities of such an ONU device in terms of the supported OAM functions.

Editorial Note (to be removed prior to publication): The following statement may need to be revised after
the PON protection spec is finalized and accepted

The eOAM discovery proces is executed once per physical ONU device.

13.3.2.1 Requirements

The EPON system shall implement the eOAM discovery process and the eOAM Capability Notification
mechanism, using the Organization Specific extensions to the Information TLV specified in
IEEE Std 802.3, 57.5.2.3.

The OLT shall enable any data services for the given ONU only upon the successful completion of the
eOAM discovery process, as defined in 13.3, and after the completion of the authentication process if
enabled by the operator.

The OLT shall deregister any ONU that does not complete the eOAM discovery process, as defined in 13.3,
within five seconds of the time when the OLT sends the first Extended Information TLV to this specific
particular ONU. The OLT shall deregister any ONU that does not participate in the eOAM discovery
process, as defined in 13.3.

The ONU and OLT shall implement the eOAM discovery process by exchanging the Organization Specific
Information TLV, as defined in IEEE Std 802.3, 57.5.2.3, and further specified in 13.2.4.1, referred to as
Extended Information TLV. The Extended Information TLV is embedded in the Information OAMPDU, as
defined in IEEE Std 802.3, 57.4.3.1. The format of the Extended Information TLV is defined in 13.2.4.1.
An ONU shall include the Extended Information TLV in all Information OAMPDUs exchanged during the
eOAM discovery process. An ONU shall start the eOAM discovery process not later than five seconds after
the successful completion of the MPCP discovery and registration process.

OLT ONU

IEEE Std 802.3, 64.3.3 / 77.3.3
Discovery and registration process

IEEE Std 802.3, 57.3.2.1
OAM Discovery process

+ Extended Information TLVtim
e

Page | 4

The presence of the Extended Information TLV, indicating support for a specific version of the eOAM
management suite, embedded in the Information OAMPDU transmitted by the ONU during the eOAM
discovery process, indicates support of 13.3, Clause 13, and Clause 14. The lack of such an Extended
Information TLV is treated as a lack of support for the requirements set forth in 13.3, Clause 13, and
Clause 14, and consequently the OLT deregisters such an ONU as indicated above.

13.3.2.2 Ordering of Organization Specific Information TLVs

 Source OAM Client requirements

A single IEEE Std 802.3, Clause 57, compliant Information OAMPDU may carry more than one
Organization Specific Information TLV. To simplify both the reception and transmission processes, a
specific order of transmission of such TLVs is required. In such a case, the Local Information TLV
(IEEE Std 802.3, 57.5.2.1) and Remote Information TLV (IEEE Std 802.3, 57.5.2.2) shall be transmitted
first, followed by the series of Organization Specific Information TLVs.

There are no specific transmission order requirements for Organization Specific Information TLVs. The
Extended Information TLV as defined in 13.4.4.1 may be transmitted as the first Organization Specific
Information TLV, followed by other Organization Specific Information TLVs, if present.

 Destination OAM Client requirements

The destination OAM Client shall support the processing of multiple Information TLVs in a single
Information OAMPDU, including Local Information TLV, Remote Information TLV, and at least one
Organization Specific Information TLV.

The destination OAM Client shall process all received Information TLVs in the order of their reception,
discarding any Information TLVs that are either malformed or unsupported. A malformed Information
TLV is considered to have an invalid length and/or unexpected type value. An unsupported Information
TLV follows the Information TLV format requirements but is marked with an OUI not supported by the
given destination OAM Client.

13.3.2.3 Message flow during eOAM discovery process

The message flow during the eOAM discovery process is very simple. After the MPCP discovery and
registration process is successfully completed, an ONU starts sending periodically Information OAMPDUs
carrying the Extended Information TLV as defined in 13.4.4.1. Such an Extended Information TLV
indicates the support of 13.3, Clause 13, and Clause 14. The ONU may also send additional Organization
Specific Information TLVs if it supports other versions of management software. Their interpretation is
outside the scope of this standard.

Having received the Extended Information TLV from an ONU, the OLT retrieves the version of the eOAM
management suite supported by the device and proceeds to poll the ONU for more information, including
software version and number of supported LLIDs, and configure it as needed.

The OLT is expected to support all the versions of the eOAM management suite that are supported by the
fielded ONUs connected to its ports. The ONU does not learn, at any time during the eOAM discovery
process, the eOAM management suite version supported by the OLT.

13.3.3 OAM and eOAM keep-alive process

During the OAM keep-alive process, Information OAMPDUs are exchanged between the OAM Clients to
indicate that both link peers are operational. This process is defined in IEEE Std 802.3, 57.2.4. The
Information OAMPDU, exchanged after the completion of the eOAM discovery process as defined in
13.3.2, may carry the Extended Information TLV or any other Organization Specific Information TLVs. An

Page | 5

ONU should include the Extended Information TLV in all Information OAMPDUs exchanged during the
eOAM keep-alive process.

The failure of the OAM keep-alive process, as defined above, is treated as a critical link condition. If the
ONU detects an OAM keep-alive failure, the ONU shall go through the MPCP deregistration process, as
defined in IEEE Std 802.3ca, 144.3.7. If the OLT detects an OAM keep-alive failure for the given ONU,
the OLT shall deregister the ONU following the MPCP deregistration process, as defined in
IEEE Std 802.3ca, 144.3.7.

13.4 eOAMPDU structure

This subclause defines the internal structure of the eOAMPDU frame, i.e., the size and meaning of
individual fields, and describes a TLV-oriented approach to packaging data in the eOAMPDU. Two
specific types of the TLVs are also specified, namely the Variable Descriptor and the Variable Container.

The eOAMPDU format is derived from the IEEE 802.3 (Clause 57) OAM frame format, through the use of
Organization Specific Extension mechanism, as described in detail in IEEE Std 802.3, 57.4.2 (Figure 57-9),
and further extended in the following subclauses.

13.4.1 Extended OAM organizationally-unique identifier (OUI)

EPON devices shall implement OAM‐based management protocols per IEEE Std 802.3, Clause 57. This
standard defines eOAM mechanisms for managing various features defined in this standard. The eOAM
mechanisms utilize the Organization Specific OAMPDU, as defined in IEEE Std 802.3, 57.4.3.6.
OAMPDUs defined are identified by the IEEE Std 1904.4-specific organizationally unique identifier (OUI)
value, as defined in Table 13-1. Note that the OUI value is shared with Package A defined in
IEEE Std 1904.1.

Table 13-1—OUI values for SIEPON.4 features

OUI Description Value
OUI_1904_4 OUI value identifying IEEE Std 1904.4 OAMPDUs 0x58-D0-8F

13.4.2 eOAMPDU frame format

Size of the individual fields in the eOAMPDU and their meanings shall be as shown in Table 13-2 and
meet the requirements included in the following description.

Table 13-2—Structure of the eOAMPDU frame

Size
(octets)

Field
(name) Value Notes

6 Destination Address 0x01-80-C2-00-00-02

eOAMPDU
header

6 Source Address Varies
2 Length/Type 0x88-09 (Slow Protocol)
1 Subtype 0x03 (OAM)
2 Flags Varies
1 Code 0xFE (Organization Specific extensions)
3 OUI OUI_1904_4
1 Opcode Varies

38 to 1492 Data + Pad Varies
4 FCS Varies

Page | 6

The eOAMPDU comprises the following fields:

a) Destination Address (DA). The DA in the eOAMPDUs is the Slow_Protocols_Multicast
address (i.e., 0x01-80-C2-00-00-02). Its use and encoding are specified in IEEE Std 802.3, Annex
57A.

b) Source Address (SA). The SA in eOAMPDUs carries the individual MAC address associated
with the port through which the eOAMPDU is transmitted.

c) Length/Type. The eOAMPDUs are always Type encoded and carry the Slow_Protocols_Type
field value.

d) Subtype. The Subtype field identifies the specific Slow Protocol being encapsulated.

e) Flags. The Flags field contains status bits as defined in IEEE Std 802.3, 57.4.2.1.

f) Code. The Code field identifies the specific type of the OAMPDU. The use and encoding of this
field are specified in IEEE Std 802.3, Table 57–4.

g) OUI. This field carries the organizationally unique identifier assigned to given organization.

h) Opcode. This field carries the value of the operation code, identifying a type of the eOAMPDU
(see 13.4.6.1).

i) Data/Pad. This field contains the eOAMPDU data and any necessary padding. The data portion
of the Data/Pad field carries a number of TLVs used to encode specific operations/values.

The Pad field is as defined in IEEE Std 802.3, Clause 3.

j) FCS. This field is the frame check sequence, as defined in IEEE Std 802.3, Clause 4.

The fields described in item a) through item g) are jointly referred to as the eOAMPDU header.

13.4.3 TLV-oriented structure

The Data/Pad field in the eOAMPDU may carry at least one TLV, used to encode a specific set of
values/operations. Individual TLV types for the eOAMPDU, i.e., Variable Descriptor and Variable
Container, are defined in the following subclauses.

A series of TLVs carried in any of the eOAM_Get_Request, eOAM_Get_Response, eOAM_Set_Request, or
eOAM_Set_Response eOAMPDUs shall be terminated with the Variable Descriptor with values carried in
the Branch and Leaf fields equal to 0.

13.4.3.1 Variable Descriptor TLV

eOAM_Get_Request eOAMPDUs (see 13.4.6.2) use the list of Variable Descriptor TLVs and permit the
management system to request the value of one or more managed objects hosted on the ONU, both defined
in IEEE Std 802.3, Clause 30.

A Variable Descriptor TLV has the form of a 3-octet 2-tuple, comprising a 1-octet Branch code and a 2-
octet Leaf code (together comprising the Type identifier), which unequivocally identifies the target
attribute/action.

The structure of a Variable Descriptor shall be as presented in Table 13-3.

Page | 7

Table 13-3—Structure of the Variable Descriptor

Size
(octets)

Field
(name) Value range

1 Branch Type
0x00: End of list of TLVs
0x01 to 0xFF

2 Leaf 0x00-00 to 0xFF-FF

13.4.3.2 Variable Container TLV

eOAM_Get_Response eOAMPDUs (see 13.4.6.3), eOAM_Set_Request eOAMPDUs (see 13.4.6.4), and
eOAM_Set_Response eOAMPDUs (see 13.4.6.5) use the list of Variable Container TLVs and permit

— The ONU to respond to the eOAM_Get_Request eOAMPDU; or

— The management system to set the value of one or more target managed attributes hosted on the
ONU; or

— The ONU to respond to the eOAM_Set_Request eOAMPDU.

A Variable Container TLV has the form of a variable-length 4-tuple, comprising the following fields:

— A 1-octet-wide Branch field

— A 2-octet-wide Leaf field

— A 1-octet-wide Length field

— A variable-length Value field, the size of which is defined by the value carried in the Length
field

The Branch/Leaf 2-tuple represents the Type field and unequivocally identifies the target
attribute/action.

The Length code identifies the size of the following Value field, with additional restrictions:

— When the Length field value is in the range of 0x00 to 0x7F, it represents the length of the
Value field, expressed in units of octets, where the value of 0x00 represents the length of the
field equal to 128 octets and length in the range of 1 to 127 octets is mapped directly into the
range of 0x01 to 0x7F (see IEEE Std 802.3, 57.6.2.1).

— When the Length field value is in the range of 0x80 to 0xFF, the value carried in this field
represents the eOAMPDU return code and implies a zero length of the Value field (no additional
value is carried in that case). The eOAMPDU return codes are defined in 13.4.7.

The Value field is present only if the Length field value is in the range of 0x00 to 0x7F and represents
the following:

— In the case of eOAM_Get_Response eOAMPDUs, the value stored in the requested managed
attribute

— In the case of eOAM_Set_Request eOAMPDUs, the value to be written into the target managed
attribute

The structure of a Variable Container TLV shall be as presented in Table 13-4.

Table 13-4—Structure of the Variable Container

Page | 8

Size
(octets)

Field
(name) Value Comments

1 Branch Type 0x00 to 0xFF —
2 Leaf 0x00-00 to 0xFF-FF —

1 Length

0x00
0x01 to 0x7F
0x80 to 0xFF

Value field is 128 octets long.
Value field is 1 to 127 octets long.
Value field is zero octets long, Length
field represents the return code per 13.4.7.

Varies Value Variable
Present only when the value in the
Length field is greater than zero; format
as defined for the branch/leaf code

Variable Containers may contain data of a few common types, as defined below:

 Integer: An integer carried in a Variable Container shall be represented in the two’s-complement
form, with the Most Significant Octet (MSO) first. Note that Variable Containers are of variable
length; as a result, attributes that are integers do not have a fixed width. The source OAM client
may suppress leading zero octets of integers. The target OAM client shall accept an integer in a
Variable Container of any legal width (1–128 octets). If a Variable Container is smaller (shorter)
than the representation used by the target OAM client, the value is extended to match the
representation used by the target OAM client as necessary. If the Variable Container is larger than
the representation used by the target OAM client, the resulting action on the received value is
implementation dependent.

 Enumerated value: An enumerated value carried in a Variable Container is a set of values with
predefined meanings. Enumerated values always have a fixed length, regardless of the number of
trailing zeros—effectively, enumerated values always have the maximum possible size anticipated
for the particular managed attribute. Examples of valid enumerated values include (in binary
format) 0b0000-0001-1000 or 0b0000-0000-0000. The source OAM client shall not suppress
trailing zeros for enumerated values, and the target OAM client shall not add trailing zeros to the
received enumerated values.

 Sequence list: A sequence list carried in a Variable Container has the form of a series (sequence)
of values, typically of the enumerated value type. All elements in the sequence list shall be of the
same length. The number of elements in the sequence list shall be determined from the size of the
given Variable Container (value of the Length field).

13.4.3.3 TLVs carrying large values

The maximum length of data that can fit into a single Variable Container is equal to 128 octets. Some
attribute values may be larger than the 128 octets, requiring a series of TLVs to transfer them between the
source OAM client and the target OAM client, using a repeated branch/leaf tuple for the attribute in
question. Such a series of TLVs is terminated with a TLV with the same branch/leaf tuple, and a length of
zero, to indicate the end of multi-TLV value.

The value of such a large attribute is segmented into a number of individual TLVs, where each TLV in
such a sequence of TLV carries a fragment of the large attribute and has the size meeting the requirements
stipulated in 13.4.3.2. As a result, the value of such a large attribute is broken into a number of blocks, each
with the size of at most 128 octets, and each such block is then carried in a dedicated TLV. For example,
assume that the ONU has 23 MAC addresses stored in the dynamic MAC address table. The OLT requests
the current list of MAC addresses learned by the ONU, in response to which the ONU needs to list all such
MAC addresses using the respective TLVs. A single TLV can hold at most 21 whole MAC addresses (21 ×
6 = 126 octets). In this case the first TLV would carry 21 MAC address, the second TLV would carry the

Page | 9

remaining 23−21 = 2 MAC addresses, and this series of TLVs would be followed by a TLV with the same
branch/leaf tuple but of zero size to indicate the end of the large value sequence.

13.4.4 TLVs for 802.3 OAMPDUs

13.4.4.1 Extended Information TLV

The Information OAMPDU defined in IEEE Std 802.3, Clause 57, can contain the Organization Specific
Information as Information TLV (IEEE Std 802.3, 57.5.2.3). Presence of this Extended Information TLV in
the Information OAMPDU during the OAM discovery process indicates that the OLT or the ONU supports
the extended OAM.

The format of the Extended Information TLV shall be as specified in Table 13-5 and described in the
following text.

Table 13-5—Structure of the Extended Information TLV

Size
(octets)

Field
(name) Value

1 Type 0xFE (Organization Specific Information TLV)
1 Length 0x05
3 OUI OUI_1904_4
1 InfoType 0x00

1 Version

This field identifies the version of the eOAM.
Bits [7:4] represent the major version number
Bits [3:0] represent the minor version number
The following values are defined:

0x30: OAM compliant with IEEE Std 1904.4-202x,
Other values are reserved and ignored on reception.

The following fields comprise the Extended Information TLV:

a) Type: this field is used to indicate the data type held in the given TLV. In the case of the
Extended Information TLV, this field carries the value of 0xFE, according to IEEE Std 802.3,
Table 57–6, indicating the Organization Specific Information TLV.

b) Length: this field is used to indicate the length of the TLV, expressed in units of octets.

c) OUI: this field is used to identify the organization to which the given Information TLV belongs.
At least one of the Organization Specific Information TLVs exchanged between the ONU and the
OLT during the eOAM discovery process shall be of Extended Information TLV type, containing
the OUI_1904_4.

d) InfoType: this field is used to identify the subtype of the Extended Information TLV.

e) Version: this field is used to indicate the version of the eOAM supported by the given device.
The internal format of this field is as follows: aaaa.bbbb (4 bits followed by 4 bits), where “aaaa”
represents the major version number, and “bbbb” represents the minor version number. For
example, a Version field carrying the value of 0b0010.0000 represents a major version 2, and a
minor version 0.

Page | 10

13.4.4.2 Event Notification TLV

The basic structure of the Organization Specific Event TLV shall be as specified in IEEE Std 802.3,
57.5.3.5. Specific fields in the Organization Specific Event TLV shall be as shown in Figure 13-2 and
specified below.

Figure 13-2—Relationship between Organization Specific Event TLV and the

Event Notification OAMPDU

a) Event Type = 0xFE, according to the encoding of this field as defined in IEEE Std 802.3, Table
57–12.

b) Event Length. This one-octet field indicates the length (in octets) of this TLV-tuple.

c) OUI value, equal to OUI_1904_4.

d) Organization Specific Value carries the specific set of event-associated information.
Further, the structure of the Organization Specific Value shall be as specified in Table
13-6 and described below.

Table 13-6—Internal structure of the Organization Specific Value field

Octet(s) Field Notes

1 EventCode

This field identifies the type of alarm that was identified by
the source OAM client. See Table 13-7 for definition of
individual values for the EventCode field. These alarm
codes are grouped into link faults, critical events, and Dying
Gasp alarm types, with code values numbered accordingly.
Only the values listed in the table are supported. Other values
are reserved and ignored on reception.

1 EventRaised

This field indicates whether the given event was raised. The
following values are supported:

0x00: The given event was cleared.
0x01: The given event was raised.
Other values are reserved and ignored on reception.

2 ObjectType This field identifies the object element generating the alarm in
question.

Page | 11

Octet(s) Field Notes
2 or 4 ObjectInstance This field identifies the object element instance generating the

alarm in question.

— ObjectType field identifies the object that generated the given event, as defined in 14.2.1.1.
Other values of the ObjectType are reserved and ignored on reception.

— ObjectInstance field identifies the specific instance of the object that generated the
given event, as defined in 14.2.1.2.

Table 13-7—Code points for the EventCode field

Event Group Event Name Code Defined in

Link Fault Alarms
LoS 0x11 13.4.4.2.1
Key Exchange Failure 0x12 13.4.4.2.2

Critical Event Alarms Port Disabled 0x21 13.4.4.2.3
Dying Gasp Alarms Power Failure 0x41 13.4.4.2.4

Other Alarms

Statistics Alarm 0x81 13.4.4.2.5
ONU Busy 0x82 13.4.4.2.6
MAC Table Overflow 0x83 13.4.4.2.7
PON_IF_Switch 0x84 13.4.4.2.8

 LoS (0x11)

For the PON port, a loss of signal (LoS) condition is detected by lack of incoming optical power or loss of
clock and data recovery lock to the downstream bit clock. The transceiver status monitoring for the ONU
and the OLT is as specified in 9.1.3. On any of the UNI ports, the LoS condition corresponds to the Link
Down condition detected by the UNI port PHY.

 Key Exchange Failure (0x12)

The Key Exchange Failure alarm indicates that a scheduled key exchange has failed. Encryption continues
with the previous key for another key exchange interval. Another key exchange is attempted at the next key
exchange time.

 Port Disabled (0x21)

The Port Disabled event indicates that one of the ONU ports has been disabled by management action. If
the PON port is disabled, then this event notification is not transmitted, and this alarm is visible only
locally on the ONU.

 Power Failure (0x41)

A Power Failure alarm indicates that the ONU lost power and is imminently going to be removed from the
EPON. An ONU makes every attempt to send this Event Notification TLV when it detects loss of power.
An ONU may not be able to actually send this Event Notification TLV if the required transmission grants
are not allocated by the OLT before the ONU runs out of power.

 Statistics Alarm (0x81)

The Statistics Alarm indicates a crossing of predefined thresholds on a specific statistic, as indicated by the
Alarm TLV, as defined in Table 13-8. Typically, these thresholds would be set for counters for error
conditions such as CRC errors.

Page | 12

Table 13-8—Alarm TLV structure

Size
(octets)

Field
(name) Value

1 Branch Branch of statistic that crossed threshold
2 Leaf Leaf of statistic that crossed threshold

 ONU Busy (0x82)

The ONU Busy alarm may be raised by an ONU to inform the OLT that it has been busy for an extended
period and may have problems responding to any further OAM requests in the usual timely fashion.

 MAC Table Overflow (0x83)

The MAC Table Overflow alarm is raised by an ONU to inform the OLT that an ingress MAC address has
not been learned because the total number of MAC addresses has been exceeded. For example, if the ONU
was provisioned to allow four MAC addresses on a particular UNI port, then the first four addresses seen
would be learned; the fifth address would cause this alarm to be raised.

 PON_IF_Switch (0x84)

The PON_IF_Switch alarm is raised by the ONU to inform the OLT that the PON interface on the ONU
was switched from the active interface to backup interface, according to the tree protection mechanism
defined in 9.3.4.

13.4.5 Multipart eOAMPDU response sequence

In some cases, responses to a single eOAMPDU transmitted by the OLT, received from the ONU, may not
fit into a single eOAMPDU, especially when reading values from tables with the total size exceeding the
payload of an eOAMPDU, e.g., MAC address tables. In this case, the ONU splits its response across
multiple eOAMPDUs. The ONU shall inform the OLT that the complete response to the original request
was not sent in a single eOAMPDU, but rather in a series of eOAMPDUs. In addition, the OLT shall be
able to detect any missing eOAMPDUs in the series of eOAMPDUs comprising a complete response from
the ONU.

To indicate that additional eOAMPDUs comprising a complete response from the ONU are forthcoming,
the ONU shall add an instance of the Sequence TLV (0xDB/0x00-01) to the response eOAMPDU to denote
the response sequence. The ONU should not add the Sequence TLV (0xDB/0x00-01) to an eOAMPDU not
being part of the response sequence.

To send a multiple part response requiring N eOAMPDUs, the ONU does the following:

 For the first eOAMPDU in the response sequence:

— Set the value in the Sequence# field to 0x00.

 For the last eOAMPDU in the response sequence:

— Set bit 15 in the Sequence# field to 1.

 For all eOAMPDUs in the response sequence:

— Add the Sequence TLV (0xDB/0x00-01) to the eOAMPDU.

— Increment the value of the Sequence# field.

Figure 13-3 presents examples of various eOAMPDU exchange sequences.

Page | 13

Figure 13-3—Example of various eOAMPDU exchange sequences

13.4.6 eOAMPDU types

Most management functions required for the proper operation of EPON are carried out through the process
of reading and writing individual attributes of the managed objects hosted in the ONU. As an example,
setting the operating speed for an UNI port requires writing an appropriate value into the speed attribute of
the proper port object. Likewise, information can be read from the respective managed objects hosted on
the ONU using dedicated eOAMPDUs.

It is also possible to cause the ONU to perform certain actions, e.g., disable specific UNI ports, reset
counters, by setting appropriate values in the stored managed objects.

13.4.6.1 eOAMPDU codes

eOAMPDUs shall be as defined in Table 13-9. These eOAMPDUs use the Organization Specific Extension
mechanisms defined in IEEE Std 802.3, Clause 57. Other values are reserved and ignored on reception.

Table 13-9—eOAMPDUs and assignment of Opcode values

Opcode eOAMPDUs Defined in
0x00 Reserved, ignored on reception
0x01 eOAM_Get_Request 13.4.6.2
0x02 eOAM_Get_Response 13.4.6.3
0x03 eOAM_Set_Request 13.4.6.4
0x04 eOAM_Set_Response 13.4.6.5
0x05 Reserved, ignored on reception
0x06 Reserved, ignored on reception
0x07 Reserved, ignored on reception
0x08 eOAM_KeyExchange 13.4.6.7
0x09 eOAM_Software 13.4.6.6
0x0A Reserved, ignored on reception
0x0B Reserved, ignored on reception

OLT Request

ONU Response

OLT Request
OLT Request

OLT Request

ONU Response

Sequence# = 0x80-00

ONU Response

Sequence# = 0x00-00

ONU Response

Sequence# = 0x80-01

ONU Response

Sequence# = 0x00-00

ONU Response

Sequence# = 0x00-01

ONU Response

Sequence# = 0x00-00

+ N-2

ONU Response

Sequence# = 0x80-00

+ N-1

...

Single part message Two part message N part message

Single part message
with

optional TLV (inefficient)

Page | 14

Opcode eOAMPDUs Defined in
0x0C Reserved, ignored on reception
0xFC eOAM_Early_WakeUpOLT 13.4.6.8
0xFD eOAM_Early_WakeUpONU 13.4.6.9
0xFE eOAM_Sleep_Allowed 13.4.6.10

13.4.6.2 eOAM_Get_Request eOAMPDU

The eOAM_Get_Request eOAMPDU permits the management system to request the value of one or more
attributes hosted on the ONU, both defined in IEEE Std 802.3, Clause 30. The Data field of the
eOAM_Get_Request eOAMPDU contains a series of Variable Descriptors and Object Context TLVs, if
needed. The size (and presence) of the Pad field depends on the number of individual Variable Descriptors
and Object Context TLVs. The structure of the Variable Descriptor is defined in 13.4.3.1. The structure of
the Object Context TLV is defined in 14.2.1.

Functionally, the eOAM_Get_Request eOAMPDU is identical to the Variable Request OAMPDU as
defined in IEEE Std 802.3, 57.4.3.3.

The structure of the eOAM_Get_Request eOAMPDU shall be as specified in Table 13-10 and as described
in more detail below.

Table 13-10—Structure of the eOAM_Get_Request eOAMPDU

Size
(octets)

Field
(name) Value

21 eOAMPDU header Varies
1 Opcode 0x01

Varies Data Varies, a series of Variable Descriptors and Object Context TLV
Varies Pad 0x00-…-00

4 FCS Varies

eOAMPDU header, Opcode, Data, Pad, and FCS fields are defined in 13.4.2.

13.4.6.3 eOAM_Get_Response eOAMPDU

The eOAM_Get_Response eOAMPDU permits the ONU to respond to the eOAM_Get_Request
eOAMPDU and contains a series of Variable Containers and Object Context TLVs, if needed.. The size
(and presence) of the Pad field depends on the number of individual Variable Containers and Object
Context TLVs. Each Variable Container may carry the value of the requested variable or a return code (per
13.4.7) if the variable reading process fails for any reason. The structure of the Variable Container is
defined in 13.4.3.2. The structure of the Object Context TLV is defined in 14.2.1.

Functionally, the eOAM_Get_Response eOAMPDU is identical to the Variable Response OAMPDU as
defined in IEEE Std 802.3, 57.4.3.4.

The structure of the eOAM_Get_Response eOAMPDU shall be as specified in Table 13-11 and as
described in more detail below.

Table 13-11—Structure of the eOAM_Get_Response eOAMPDU

Size
(octets)

Field
(name) Value

21 eOAMPDU header Varies
1 Opcode 0x02

Varies Data Varies, a series of Variable Containers and Object Context TLVs
Varies Pad 0x00-…-00

Page | 15

Size
(octets)

Field
(name) Value

4 FCS Varies

eOAMPDU header, Opcode, Data, Pad, and FCS fields are defined in 13.4.2.

The size of individual Variable Container(s) ranges between 5 and 132 octets, with the maximum size
limited by the Length field encoding used in the Variable Container, as defined in 13.4.3.2.

13.4.6.4 eOAM_Set_Request eOAMPDU

The eOAM_Set_Request eOAMPDU permits the management system to set the value of one or more
attributes hosted on the ONU, both defined in IEEE Std 802.3, Clause 30. The Data field of the
eOAM_Set_Request eOAMPDU contains a series of Variable Containers and Object Context TLVs, if
needed. The size (and presence) of the Pad field depends on the number of individual Variable Containers
and Object Context TLVs. The structure of the Variable Container is defined in 13.4.3.2. The structure of
the Object Context TLV is defined in 14.2.1.

The eOAM_Set_Request eOAMPDU does not have a functional equivalent in the OAMPDU defined in
IEEE Std 802.3, Clause 57. IEEE 802.3 OAM does not support operations related to setting attributes and
actions.

The structure of the eOAM_Set_Request eOAMPDU shall be as specified in Table 13-12 and as described
in more detail below.

Table 13-12—Structure of the eOAM_Set_Request eOAMPDU

Size
(octets)

Field
(name) Value

21 eOAMPDU header Varies
1 Opcode 0x03

Varies Data Varies, a series of M Variable Containers and Object Context
TLVs

Varies Pad 0x00-…-00
4 FCS Varies

eOAMPDU header, Opcode, Data, Pad, and FCS fields are defined in 13.4.2.

Each Variable Container included in the eOAM_Set_Request eOAMPDU may map into an attribute (e.g.,
for branches 0x07 or 0xDB) or an action (e.g., for branches 0x09 or 0xDD), as indicated by the
Branch/Leaf 2-tuple. The Value field provides a new value to be assigned to the target attribute or a
parameter for the target action.

Actions instruct the target eOAM client to execute a procedure, e.g., rebooting the ONU. The management
actions specified in IEEE Std 802.3, Clause 30, are not supported in the IEEE Std 802.3 (Clause 57)
OAMPDUs. The OAM extensions allow the source eOAM client to request execution of both actions
defined by IEEE Std 802.3, Clause 30, and actions. Some of the actions are expressed using the Variable
Container, where the parameters for this action are carried in the body of the Variable Container. Actions
that do not have parameters are represented with a Variable Container of zero length (Length value of
0x80).

13.4.6.5 eOAM_Set_Response eOAMPDU

The eOAM_Set_Response eOAMPDU permits the ONU to respond to management requests (read
variable[s], set variable[s], or perform action[s]) and contains a series of Variable Containers and Object

Page | 16

Context TLVs, if needed. The size (and presence) of the Pad field depends on the number of individual
Variable Containers and Object Context TLVs. Each Variable Container carries a return code (see 13.4.7)
together with the Branch/Leaf identification of the target attribute/action. The structure of the Variable
Container is defined in 13.4.3.2. The structure of the Object Context TLV is defined in 14.2.1.

The structure of the eOAM_Set_Response eOAMPDU shall be as specified in Table 13-13 and as described
in more detail below.

Table 13-13—Structure of the eOAM_Set_Response eOAMPDU

Size
(octets)

Field
(name) Value

21 eOAMPDU header Varies
1 Opcode 0x04

Varies Data Varies, a series of Variable Containers and Object Context
TLVs

Varies Pad 0x00-…-00
4 FCS Varies

eOAMPDU header, Opcode, Data, Pad, and FCS fields are defined in 13.4.2.

13.4.6.6 eOAM_Software eOAMPDU

This subclause provides the definition of the generic eOAM_Software eOAMPDU, together with the
specific eOAMPDU subtypes required to implement the software update mechanism. The software update
mechanism is specified in 12.3.3.

 eOAM_Software eOAMPDU structure

The eOAM_Software eOAMPDU is a specific type of the generic eOAMPDU, as defined in Table 13-8.

The generic structure of the eOAM_Software eOAMPDU shall be as presented in Table 13-14 and as
described in more detail below.

Table 13-14—Structure of the eOAM_Software eOAMPDU

Size
(octets)

Field
(name) Value + notes

21 eOAMPDU header Varies
1 Opcode 0x09

1 FileTransferOpcode Indicates the type of the eOAM_Software eOAMPDU, per Table
13-15.

Varies FileTransferBody
Carries the actual data portion of the eOAM_Software
eOAMPDU, depending on the value of the
FileTransferOpcode field.

Varies Pad (optional) 0x00-…-00
4 FCS Varies

Table 13-15—Values of the FileTransferOpcode field

FileTransferOpcode value Value
Reserved 0x00
eOAM_Software_WriteRequest 0x01
eOAM_Software_FileTransferData 0x02
eOAM_Software_FileTransferAck 0x03

a) eOAMPDU header, as defined in 13.4.2.

Page | 17

b) Opcode, as defined in 13.4.2. This field carries the value of 0x09 for eOAM_Software
eOAMPDU.

c) FileTransferOpcode indicates the type of the eOAM_Software eOAMPDU. Three types of
eOAM_Software eOAMPDUs are defined:

0x01: eOAM_Software_WriteRequest eOAMPDU is used by the OLT to initiate the ONU
software image transfer process.

0x02: eOAM_Software_FileTransferData eOAMPDU is used by the OLT to transfer a
fragment of the given ONU software image between the OLT and the ONU.

0x03: eOAM_Software_FileTransferAck eOAMPDU is used by the ONU to provide a return
code to the OLT, indicating the current status of the ONU software image transfer process.

Other values are reserved and ignored on reception.

d) FileTransferBody carries the actual information related to the given software upgrade
process. There are several supported messages types, as specified by the
FileTransferOpcode field.

Individual eOAM_Software eOAMPDUs (eOAM_Software_WriteRequest eOAMPDU,
eOAM_Software_FileTransferData eOAMPDU, and eOAM_Software_FileTransferAck
eOAMPDU) are further defined in the following subclauses.

The size of this field is variable and depends on the eOAMPDU subtype as indicated in the
Type field.

e) Pad, as defined in 13.4.2. The length of this field is variable and depends on the size of the total
size of the FileTransferOpcode and FileTransferBody fields.

f) FCS, as defined in 13.4.2.

 eOAM_Software_WriteRequest eOAMPDU

The eOAM_Software_WriteRequest eOAMPDUs is used by the OLT to initiate a file transfer from the OLT
to the selected ONU and deliver the name of the ONU software filename to be stored in the
aOnuFwFileName (0xDB/0x01-0E) attribute. After this eOAMPDU is received, the ONU prepares for the
reception of the software image.

The structure of the eOAM_Software_WriteRequest eOAMPDU shall be as specified in Table 13-16 and as
described in more detail below.

Table 13-16—Structure of the eOAM_Software_WriteRequest eOAMPDU

Size
(octets) Field Value + notes

21 eOAMPDU header Varies
1 Opcode 0x09
1 FileTransferOpcode 0x01

Varies FileName null-terminated ASCII string
Varies Pad (optional) 0x00-…-00

4 FCS Varies

a) eOAMPDU header, Opcode, FileTransferOpcode, Pad, and FCS fields are defined in
13.4.6.6.1.

b) FileTransferOpcode identifies the eOAM_Software_WriteRequest eOAMPDU.

Page | 18

c) FileName represents the ONU software filename, to be stored at the ONU in the
aOnuFwFileName (0xDB/0x01-0E) attribute.

 eOAM_Software_FileTransferData eOAMPDU

The eOAM_Software_FileTransferData eOAMPDUs are used to carry individual fragments of the ONU
software image file. Each eOAMPDU carries the block number (BlockNumber field) and data fragment
size indicator (BlockWidth field), specifying the number of file data octets to follow.

The structure of the eOAM_Software_FileTransferData eOAMPDU shall be as specified in Table 13-17
and as described in more detail below.

Table 13-17—Structure of the eOAM_Software_FileTransferData eOAMPDU

Size
(octets)

Field
(name) Value + notes

21 eOAMPDU header Varies
1 Opcode 0x09
1 FileTransferOpcode 0x02

2 BlockNumber This field reflects the sequential number of the current ONU
software image fragment carried in this eOAMPDU.

2 BlockWidth

This field reflects the size of the BlockData field. Its value is
expressed in units of octets. When the value of this field is equal
to 0x00-00, this eOAMPDU is used to keep the ONU software
image transfer process alive.

Varies BlockData This field carries the actual fragment of the ONU software
image.

Varies Pad (optional) 0x00-…-00
4 FCS Varies

a) eOAMPDU header, Opcode, FileTransferOpcode, Pad, and FCS fields are defined in
13.4.6.6.1.

b) FileTransferOpcode identifies the eOAM_Software_FileTransferData eOAMPDU.

c) BlockNumber contains the sequential number of the current ONU software image fragment
carried in the eOAM_Software_FileTransferData eOAMPDU.

d) BlockWidth represents the size of BlockData. Its value is expressed in units of octets. When
the eOAM_Software_FileTransferData eOAMPDU is used to keep the ONU software image
transfer process alive (keep-alive message), the value of this field is equal to 0x00-00.

e) BlockData carries the actual fragment of the ONU software image.

 eOAM_Software_FileTransferAck eOAMPDU

The eOAM_Software_FileTransferAck eOAMPDU is used by the ONU to indicate the current status of the
ONU software image transfer process. Each eOAMPDU of this type carries the block number
(BlockNumber field) and the response code (ResponseCode field). The block number indicates the
number of the next ONU software image data block expected by the ONU.

The eOAM_Software_FileTransferAck eOAMPDU is also used by the OLT to indicate the end of the ONU
software image file. In this case, the eOAM_Software_FileTransferAck eOAMPDU carries the
BlockNumber value of 0x00-00, together with the ResponseCode value indicating the end of the
transfer process.

Page | 19

The structure of the eOAM_Software_FileTransferAck eOAMPDU shall be as specified in Table 13-18 and
as described in more detail below.

Table 13-18—Structure of the eOAM_Software_FileTransferAck eOAMPDU

Size
(octets)

Field
(name) Value + notes

21 eOAMPDU header Varies
1 Opcode 0x09
1 FileTransferOpcode 0x03

2 BlockNumber This field carries the sequential number of the software image
fragment (block) that the ONU expects to receive next.

1 ResponseCode This field carries the response code generated by the sender
entity (either ONU or OLT).

Varies Pad (optional) 0x00-…-00
4 FCS Varies

a) eOAMPDU header, Opcode, FileTransferOpcode, Pad, and FCS fields are defined in
13.4.6.6.1.

b) FileTransferOpcode identifies the eOAM_Software_FileTransferData eOAMPDU.

c) BlockNumber contains the number of the software image block, as described in 13.4.6.6.3.

d) ResponseCode carries the response code, as defined in Table 13-19. Only the values specified
in Table 13-19 are allowed. Other values are reserved and cause the
eOAM_Software_FileTransferAck eOAMPDU to be ignored.

Table 13-19—Response Code values carried in ResponseCode field

Response Code Value Meaning
OK 0x00 No errors.
Undefined 0x01 Unknown error, or one not covered elsewhere.
Not Found 0x02 Read requested file that is not available.
No Access 0x03 Access permissions do not allow the requested read/write.
Full 0x04 Storage is full, and cannot hold the written file.
Illegal Operation 0x05 Cannot perform requested operation in current state.
Unknown ID 0x06 Requested file ID is not supported by this device.
Bad Block 0x07 Block received in error.
Timeout 0x08 No block received before timer expiration.
Busy 0x09 Cannot perform requested action due to other activity.

Incompatible File 0x0A Received file is incompatible with this device. File
incompatibility is determined by the device vendor.

Corrupted File 0x0B File was received corrupted and is unusable by this device.
File integrity is determined by the device vendor.

13.4.6.7 eOAM_KeyExchange eOAMPDU

The eOAM_KeyExchange eOAMPDU is used to implement the key exchange protocol between the OLT
and the ONU.

 eOAM_KeyExchange eOAMPDU structure

The eOAM_KeyExchange eOAMPDU is a specific type of the generic eOAMPDU, as defined in Table
13-2.

Page | 20

The structure of the eOAM_KeyExchange eOAMPDU shall be as presented in Table 13-20 and as
described in more detail below.

Table 13-20—Structure of the eOAM_KeyExchange eOAMPDU

Size
(octets)

Field
(name) Value + notes

21 eOAMPDU header Varies
1 Opcode 0x08
1 KeyExchangeOpcode Indicates the type of the eOAM_KeyExchange eOAMPDU.

Varies KeyExchangeBody
Carries the actual data portion of the eOAM_KeyExchange
eOAMPDU, depending on the value of the Key Exchange
Opcode field.

Varies Pad (optional) 0x00-…-00
4 FCS Varies

a) eOAMPDU header, as defined in 13.4.2.

b) Opcode, as defined in 13.4.2. This field carries the value of 0x08 for eOAM_KeyExchange
eOAMPDU.

c) KeyExchangeOpcode indicates the type of the eOAM_KeyExchange eOAMPDU. Two types
of eOAM_KeyExchange eOAMPDUs are defined:

0x00: eOAM_KeyExchange_Assign eOAMPDU is used to assign the encryption key.

0x01: eOAM_KeyExchange_ACK eOAMPDU is used to acknowledge the assignment of the
encryption key.

Other values are reserved and ignored on reception.

d) KeyExchangeBody carries the actual information related key exchange process. There are
several supported messages types, as specified by the Key Exchange Opcode field.

Individual eOAM_KeyExchange eOAMPDUs (eOAM_KeyExchange_Assign and
eOAM_KeyExchange_ACK eOAMPDU) are further defined in the following subclauses.

The size of this field is variable and depends on the eOAMPDU subtype as indicated in the Type
field.

e) Pad, as defined in 13.4.2. The length of this field is variable and depends on the size of the total
size of the KeyExchangeOpcode and KeyExchangeBody fields.

f) FCS, as defined in 13.4.2.

 eOAM_KeyExchange_Assign eOAMPDU

The eOAM_KeyExchange_Assign eOAMPDU is used to assign the new encryption key to the link peer.

The structure of the eOAM_KeyExchange_Assign eOAMPDU shall be as specified in Table 13-21 and as
described in more detail below.

Table 13-21—Structure of the eOAM_KeyExchange_Assign eOAMPDU

Size
(octets)

Field
(name) Value + notes

21 eOAMPDU header Varies
1 Opcode 0x08
1 KeyExchangeOpcode 0x00

Page | 21

Size
(octets)

Field
(name) Value + notes

2 LLID

This field carries the value of LLID (as in LLID carried in the
frame preamble) for L-ONU to which this eOAMPDU applies.
The supported range of values is 0x00-00 to 0x7F-FF.
Other values are reserved and ignored on reception.

1 KeyNumber
This field indicates the key exchange phase. The supported
range of value is 0x00 to 0x01.
Other values are reserved and ignored on reception

1 KeyLength This field indicates the length of the encryption key. The value
is expressed in units of octets.

Varies Key This field carries the actual encryption key of the length
indicates by the Key Length field.

Varies Pad (optional) 0x00-…-00
4 FCS Varies

a) eOAMPDU header, Opcode, Pad, and FCS fields are defined in 13.4.2.

b) KeyExchangeOpcode identifies the eOAM_KeyExchange_Assign eOAMPDU.

c) LLID indicates the value of L-ONU LLID to which this eOAM_KeyExchange_Assign eOAMPDU
refers.

d) KeyNumber indicates the key exchange phase, indicating to the receiving link peer whether the
current or previous key is to be used.

e) KeyLength provides information on the length of the actual encryption key, expressed in units
of octets.

f) Key carries the actual encryption key.

 eOAM_KeyExchange_ACK eOAMPDU

The eOAM_KeyExchange_ACK eOAMPDU is used by the link peer to confirm the assignment of the new
encryption key.

The structure of the eOAM_KeyExchange_ACK eOAMPDU shall be as specified in Table 13-22 and as
described in more detail below.

Table 13-22—Structure of the eOAM_KeyExchange_ACK eOAMPDU

Size
(octets)

Field
(name) Value + notes

21 eOAMPDU header Varies
1 Opcode 0x08
1 KeyExchangeOpcode 0x01

2 LLID

This field carries the value of LLID (as in LLID carried in the
frame preamble) for L-ONU to which this eOAMPDU applies.
The supported range of values is 0x00-00 to 0x7F-FF.
Other values are reserved and ignored on reception.

1 KeyNumber
This field indicates the key exchange phase. The supported
range of value is 0x00 to 0x01.
Other values are reserved and ignored on reception.

Varies Pad (optional) 0x00-…-00
4 FCS Varies

a) eOAMPDU header, Opcode, Pad, and FCS fields are defined in 13.4.2.

Page | 22

b) KeyExchangeOpcode identifies the eOAM_KeyExchange_ACK eOAMPDU.

c) LLID indicates the value of L-ONU LLID to which this eOAM_KeyExchange_ACK eOAMPDU
refers.

d) KeyNumber indicates the key exchange phase, indicating to the receiving link peer whether the
current or previous key is to be used.

13.4.6.8 eOAM_Early_WakeUpOLT eOAMPDU

The OLT with enabled support for early wake-up function sends the eOAM_Early_WakeUpOLT
eOAMPDU to request the ONU to leave the sleep state and enter the active state.

The structure of the eOAM_Early_WakeUpOLT eOAMPDU shall be as specified in Table 13-23 and as
described in more detail below.

Table 13-23—Structure of the eOAM_Early_WakeUpOLT eOAMPDU

Size
(octets)

Field
(name) Value

21 eOAMPDU header Varies
1 Opcode 0xFC

38 Pad 0x00-…-00
4 FCS Varies

eOAMPDU header, Opcode, Pad, and FCS fields are defined in 13.4.2.

13.4.6.9 eOAM_Early_WakeUpONU eOAMPDU

The ONU sends the eOAM_Early_WakeUpONU eOAMPDU to indicate to the OLT that it left the sleep
state and entered the active state. This information allows the OLT to enable the downstream queues and
resume downstream transmission to this particular ONU.

The structure of the eOAM_Early_WakeUpONU eOAMPDU shall be as specified in Table 13-24 and as
described in more detail below.

Table 13-24—Structure of the eOAM_Early_WakeUpONU eOAMPDU

Size
(octets)

Field
(name) Value

21 eOAMPDU header Varies
1 Opcode 0xFD

38 Pad 0x00-…-00
4 FCS Varies

eOAMPDU header, Opcode, Pad, and FCS fields are defined in 13.4.2.

13.4.6.10 eOAM_Sleep_Allowed eOAMPDU

The eOAM_Sleep_Allowed eOAMPDU is used by the OLT to request the ONU to enter the specified sleep
mode (indicated by the SleepMode field) for a specific duration of time (indicated by the
SleepDuration field).

The structure of the eOAM_Sleep_Allowed eOAMPDU shall be as specified in Table 13-25.

Table 13-25—Structure of the eOAM_Sleep_Allowed eOAMPDU

Page | 23

Size
(octets)

Field
(name) Value

21 eOAMPDU header Varies
1 Opcode 0xFE
1 SleepMode Sleep mode requested by the OLT
4 SleepDuration The duration of the sleep state, expressed in units of time quanta

Varies Pad 0x00-…-00
4 FCS Varies

eOAMPDU header, Opcode, Pad, and FCS fields are defined in 13.4.2.

13.4.7 eOAMPDU return codes

The eOAMPDU generated by the ONU in response to OLT-side query eOAMPDU may carry return codes
when the Length field value in the Variable Container is in the range of 0x80 to 0xFF. Specific return
codes shall be as specified in Table 13-26. Other values are reserved and ignored on reception.

Per the definition of the Variable Container (see 13.4.3.2), when bit 7 in the Length field is set, the
Value field is not present in the Variable Container.

Table 13-26—Return codes

Code Name Description
0x80 No Error The operation was successfully completed.
0x81 Too Long Length of result exceeded eOAMPDU data field available.
0x86 Bad Parameters Parameters for the requested action fail error checking.

0x87 No Resources The device does not currently have the resources (table
entries, memory, etc.) to perform the requested action.

0x88 System Busy The device is not currently in the proper state to perform the
requested action.

0xA0 Undetermined Error Unknown or unlisted attribute error.
0xA1 Unsupported An attribute requested is not supported on this device.
0xA2 May Be Corrupted The value of an attribute counter may be invalid due to reset.

0xA3 Hardware Failure An attribute hardware error prevented the operation from
completing.

0xA4 Overflow The requested attribute experienced overflow error.

NOTESpecific return codes may be carried in either eOAM_Set_Response eOAMPDU or eOAM_Get_Response
eOAMPDU.

The OLT at its own discretion may send multiple TLVs in a single eOAM_Set_Request eOAMPDU or
eOAM_Get_Request eOAMPDU, covering multiple attributes and/or actions.

The ONU shall provide exactly one TLV with the return code for each attribute/action TLV included in the
received eOAM_Set_Request eOAMPDU. The ONU shall provide either exactly one TLV with the return
code or at least one TLV with the value of the requested attribute for each attribute TLV included in the
received eOAM_Get_Request eOAMPDU. The number of eOAM_Set_Response or eOAM_Get_Response
eOAMPDUs generated by the ONU depends on the number of response TLVs generated by the ONU in
response to attribute/action TLVs in the received eOAM_Set_Request or eOAM_Get_Request eOAMPDU.

If a TLV in the eOAM_Set_Request eOAMPDU requires the accompanying Object Context TLV, the return
code in the eOAM_Set_Response eOAMPDU shall be preceded by the same Object Context TLV. If the
series of return codes to the given TLVs in the eOAM_Set_Request eOAMPDU does not fit into one
eOAM_Set_Response eOAMPDU, the remaining part of the series of return codes shall be preceded by the
appropriate Object Context TLV.

Page | 24

13.5 Software update

The software upgrade mechanism allows an ONU to receive a new software image from the OLT, verify it,
and switch to using the new image (i.e., load and execute the new software image upon the reboot.)

In this subclause, the following terms are used extensively:

 software: software and/or firmware. The process of upgrading ONU software and/or firmware is
the same, and specific separation of the downloaded software image is at the discretion of the
given system provider. It is also outside the scope of this standard.

 committed image: the software image stored in the ONU’s permanent memory and marked to be
used (i.e., loaded and executed) upon the ONU restart.

 committing: the process involving storing the software image in the ONU’s permanent memory,
verifying the integrity of the stored image, and marking the image to be used on next ONU restart.
The committing process does not invoke an automatic ONU restart. However, on subsequent
restarts, the image marked as committed is used.

13.5.1 Software image download process

The software image download process is outlined in Figure 13-4 and is further defined in the state diagram
shown in Figure 13-5 for the ONU and in the state diagram shown in Figure 13-6 for the OLT.

Page | 25

Figure 13-4—Data flow during a successful
software image download and committing process

OLT ONU

eOAM_Software_WriteRequest

eOAM_Software_FileTransferAck

Block Number = 0x00-00, Response Code = 0x00

…
…

eOAM_Software_FileTransferData Block Number = 0x00-00

eOAM_Software_FileTransferAck

Block Number = 0x00-01, Response Code = 0x00

eOAM_Software_FileTransferAck

Block Number = N+1, Response Code = 0x00

eOAM_Software_FileTransferData Block Number = N

eOAM_Software_FileTransferAckBlock Number = 0x00-00, Response Code = 0x00

eOAM_Software_FileTransferAck

Block Number = 0x00-00, Response Code = 0x00

NMS requests OLT to
start software

download to ONU

OLT downloads
software to ONU

ONU receives blocks of
software image and

stores them in memory

OLT informs the ONU
that the download is

complete

ONU verifies and
commits the new image

successfully

ONU prepares internal
storage to receive the
new software image

OLT requests ONU to
reboot

eOAM_Set_RequestONU Reboot TLV (0xD9/0x00-01)

ONU reboots

Page | 26

During the eOAM discovery process, the OLT learns the basic information about the ONU, including type,
chipset version, ONU capabilities, software version, etc. This information is used by the NMS to determine
whether the software in the given registering ONU needs to be upgraded.

The decision to perform a software upgrade for the given ONU remains at the sole discretion of the NMS.
The NMS requests the OLT to initiate the software upgrade process for a given ONU as outlined in Figure
13-4.

The software image download process has the form of a file transfer from the OLT to the ONU. This
process is similar to TFTP, but it includes a number of EPON-specific optimizations:

 The transfer protocol operates over the IEEE 802.3 OAM channel instead of IP channel. It uses
variable-length eOAMPDUs specified in 13.4.6.6.

 The transfer mode includes only binary data encoding.

 The ONU responses indicate the next block that the ONU expects to receive rather than
acknowledge the last received block.

The software upgrade process comprises the following steps:

 Download initiation

 Download

 Verification

 Committing

13.5.1.1 Download initiation step

The software image download step is started by the NMS by requesting the OLT to download the updated
software image for the selected ONU. In response to this request, the OLT sends the
eOAM_Software_WriteRequest eOAMPDU (as specified in 13.4.6.6.2), containing the ONU software
filename to be stored in the aOnuFwFileName (0xDB/0x01-0E) attribute. The ONU responds to this
request by sending either

a) eOAM_Software_FileTransferAck eOAMPDU with BlockNumber = 0x00-00 and
ResponseCode = 0x00 (see 13.4.6.6.4), when the ONU is ready to accept the forthcoming
software image; or

b) eOAM_Software_FileTransferAck eOAMPDU, with BlockNumber = 0x00-00 and a specific
value in the ResponseCode field, indicating the type and additional description of the
encountered error (see Table 13-19). In this case, the software image download process is
interrupted and may be reinitialized in the future, if needed.

13.5.1.2 Download step

Once the eOAM_Software_FileTransferAck eOAMPDU with BlockNumber = 0x00-00 and
ResponseCode = 0x00 is received by the OLT, the OLT starts transmission of individual blocks of the
software image using the series of eOAM_Software_FileTransferData eOAMPDUs (as specified in
13.4.6.6.3).

For the transfer, the software image is divided into a number of data blocks, where each block is at most
1400 octets long and the last block may be smaller than 1400 octets. Each of the transmitted software
image blocks is accompanied by a sequentially increasing block number carried in the BlockNumber
field in the eOAM_Software_FileTransferData eOAMPDU. This block number is used in the

Page | 27

acknowledgment mechanism: each transmitted block is acknowledged by the ONU by sending the
eOAM_Software_FileTransferAck eOAMPDU with the value in the BlockNumber field equal to the
value carried in the BlockNumber field in the eOAM_Software_FileTransferData eOAMPDU plus one,
indicating the number of the next software image block expected by the ONU. The OLT sends the next
software image block only after the next software image block was requested by the ONU.

Once the file transfer begins, the OLT sends at least one eOAM_Software_FileTransferData eOAMPDU
every second. If the OLT does not receive an eOAM_Software_FileTransferAck eOAMPDU from the ONU
requesting the next block within one second of sending the last block, the OLT sends a keep-alive message
(eOAM_Software_FileTransferData eOAMPDU with the BlockWidth equal to 0x00). Upon sending
three keep-alive messages, the OLT aborts the software download process.

If the ONU fails to receive an eOAM_Software_FileTransferAck eOAMPDU every second, a timeout is
counted, and the ONU sends an eOAM_Software_FileTransferAck eOAMPDU. This message contains the
timeout error code and the sequence number indicating the desired block of the software image. Upon
detecting three successive timeouts, the ONU aborts the software download process.

If the software image downloading process is aborted by either the OLT or the ONU due to three
successive timeouts or other reasons, the ONU shall retain the software image that existed in the ONU prior
to the failed download attempt.

13.5.1.3 Verification step

Once the OLT receives the eOAM_Software_FileTransferAck eOAMPDU confirming the successful
reception of the last software image block, the OLT sends the eOAM_Software_FileTransferAck
eOAMPDU with BlockNumber = 0x00-00 and ResponseCode = 0x00, requesting the ONU to verify
that the software image was received, assembled, and stored correctly in the internal ONU storage.

The verification step uses the software image ICS. The downloaded software image contains an embedded
ICS value (its location relative to the beginning of the software image is outside the scope of this
specification). The ONU calculates the ICS for the downloaded software image and compares it with the
ICS embedded in the software image. Other methods of software image verification are also allowed, but
remain outside the scope of this standard.

If the verification was successful, the ResponseCode field holds the value of 0x00. In this case, the
software download process is complete, and the ONU automatically starts the software image committing
step. Otherwise, the ONU responds to the OLT with the eOAM_Software_FileTransferAck eOAMPDU
(see 13.4.6.6.4) with the appropriate value of the ResponseCode field (per Table 13-19).

13.5.1.4 Committing step

The software image committing step is used to make the newly downloaded software image a default boot
image from the next ONU restart onward. The OLT does not provide additional signaling for the ONU to
start the software image committing process.

The software image committing step starts automatically once the ONU successfully verifies the received
software image. This step involves writing a new software image into the permanent memory on the ONU
and verifying the integrity of the written software image.

Once the software image committing step has successfully completed, the ONU sends the
eOAM_Software_FileTransferAck eOAMPDU with BlockNumber = 0x00-00 and ResponseCode =
0x00, indicating the success of the software image committing step. If the committing process is successful,
the ONU uses the newly committed software image on next restart of the device. ONU restart is not
performed automatically as part of the committing step.

Page | 28

In the case of any errors detected during the process of committing the newly downloaded software image,
the ONU sends the eOAM_Software_FileTransferAck eOAMPDU with BlockNumber = 0x00-00 and
ResponseCode field that holds any of the values specified in Table 13-19, indicating a problem with the
software image committing step. If the ONU is unable to complete the committing step (due to power
interruption or other reasons) or if the integrity of the image written to the permanent storage is not
confirmed, the ONU shall retain the previous version of the software image.

When the OLT receives the eOAM_Software_FileTransferAck eOAMPDU with BlockNumber = 0x00-
00 and ResponseCode = 0x00, confirming the successful committal of the software image, it issues the
eOAM_Set_Request eOAMPDU (see 13.4.6.4) with the ONU Reboot TLV (0xDD/0x00-01), as defined in
14.6.1.1, instructing the ONU to restart. The ONU loads the new software image as part of the restart
process.

13.5.2 State diagrams

This subclause specifies the state diagrams for the software download process for the ONU and the OLT.

The software image download process on the OLT side is driven by the NMS. The OLT returns the
completion result of individual steps to the NMS using the appropriate NMSI type primitives, as defined in
13.5.2.5.

13.5.2.1 Constants

receiveTimeout

TYPE: 16-bit unsigned integer

This constant represents the duration of the time interval between reception of subsequent
messages at the given ONU. This constant is expressed in units of milliseconds.

VALUE: 0x03-E8 (1 second)

retryLimit

TYPE: 8-bit unsigned integer

This constant represents the maximum number of retransmission attempts for a single message.
Once the retryLimit transmission attempts fail, the given device reacts per Figure 13-5 for the
ONU and Figure 13-6 for the OLT.

VALUE: 3

storeTimeout

TYPE: 16-bit unsigned integer

This constant represents the duration of the time interval between subsequent reattempts of the
software image committing process for the downloaded software image. This constant is expressed
in units of milliseconds.

VALUE: 0x3A-98 (15 seconds)

Page | 29

transmitTimeout

TYPE: 16-bit unsigned integer

This constant represents the duration of the time interval between subsequent retransmissions of
the same software image block encapsulated in the eOAM_Software_FileTransferData
eOAMPDU to the given ONU. This constant is expressed in units of milliseconds.

VALUE: 0x03-E8 (1 second)

13.5.2.2 Variables

blockData

TYPE: bit array

This bit array contains the software image fragment (block) carried in the
eOAM_Software_FileTransferData eOAMPDU. The size of the blockData bit array is derived
from the BlockWidth field of this eOAMPDU.

blockNumber

TYPE: 16-bit unsigned integer

This variable identifies the software image block number in the sequence of transmission.

blockSize

TYPE: 16-bit unsigned integer

This variable identifies the maximum size of a single software image block that may be delivered
to the ONU. This variable is set locally by the OLT prior to starting the software download
process.

blockWidth

TYPE: 16-bit unsigned integer

This variable represents the size of the software image block, as extracted from the
eOAM_Software_FileTransferData eOAMPDU.

commitDone

TYPE: Boolean

The value of true indicates that the software image committing process successfully completed
operations in the COMMIT_IMAGE or ACK_BUSY states. Otherwise, the value of
commitDone is set to false.

fileName

TYPE: null-terminated ASCII string

This variable represents the ONU software filename, as indicated by the NMS.

Page | 30

imageSize

TYPE: 32-bit unsigned integer

This variable represents the size of the software image, expressed in units of octets.

lastBlock

TYPE: 16-bit unsigned integer

This variable represents the index (sequence number) of the last software image block in the
software image received from the NMS.

localTimeoutCount

TYPE: 8-bit unsigned integer

This variable counts the number of local timeout events observed by the OLT during the software
download and committing process for a single message, as shown in Figure 13-6.

nextBlock

TYPE: 16-bit unsigned integer

This variable represents the index (sequence number) of the software image block that the ONU
expects next. The first image block has an index of 0x00-00.

remoteTimeoutCount

TYPE: 8-bit unsigned integer

This variable counts the number of remote timeout events observed by the OLT during the
software download and committing process for a single message, as shown in Figure 13-6.

resultCode

TYPE: 16-bit unsigned integer

This variable represents the numeric error code for the given error event as returned by the
function.

retryCount

TYPE: 8-bit unsigned integer

This variable represents the current number of retransmission attempts for the given message.

storageDone

TYPE: Boolean

The value of true indicates that the verifyStorage() function in the ONU has completed
preparing storage for the new software image. Otherwise, the value of storageDone is set to
false.

Page | 31

13.5.2.3 Timers

retryTimer

This timer is used to measure the time interval between reception of subsequent messages from the
ONU or the OLT. If three consecutive timeouts are announced, the given part of the software
download process is aborted.

13.5.2.4 Functions

clearStorage(newImage)

This function deletes the partially downloaded image when the download process is aborted.

commitImage(newImage)

This function is used to write a new software image into the permanent memory on the ONU and
verify the integrity of the written software image. On completion, this function sets the
commitDone variable to true. This function returns the values as defined in Table 13-19.

getBlock(image, block#)

This function extracts the software image block number block# from the software image pointed
to by image and returns it in the form of a bit array saved into the blockData variable. The
retrieved software image block is then delivered to the ONU.

verifyImage(imageId)

This function verifies the integrity of the downloaded and assembled software image, identified by
the parameter imageId. This function verifies that the ICS calculated for the stored software
image, identified by a parameter imageId, matches the ICS embedded in the software image
itself. The location of the embedded ICS code in the downloaded software image is
implementation dependent. In addition, this function may also check for implementation-
dependent criteria, such as verification of correct image type or version, verification of correct
product ID vendor ID, etc. This function returns the values as defined in Table 13-19.

verifyStorage(storageId)

This function prepares the memory storage identified by the parameter storageId and verifies
that it is ready to receive a new software image. This function may perform flash memory erasure
and other necessary operations. On completion, this function sets the storageDone variable to
true. This function returns the values as defined in Table 13-19.

write(image, block)

This function is used to write a data fragment (block) passed in the block parameter into the
selected software image, identified by the image parameter. This function returns the values as
defined in Table 13-19.

Page | 32

13.5.2.5 Primitives

eOAMI_Any

This primitive represents the reception of any eOAMPDU related to the software download
protocol (defined in 13.4.6.6). It replaces the following logical condition:

OPI(source_address, flags, code, Opcode) AND
code == 0xFE AND
Opcode == 0x09

eOAMI_FTA(block, code)

Acronym for eOAM_Software_FileTransferAck eOAMPDU, as defined in 13.4.6.6.4. It replaces
the following logical condition:

OPI(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | ResponseCode) AND
code == 0xFE AND
Opcode == 0x09 AND
FileTransferOpcode == 0x03 AND
BlockNumber == block AND
ResponseCode == code

eOAMI_FTA_End

Acronym for eOAMI_FTA(0x00-00, OK). The value OK is defined in Table 13-19.

eOAMI_FTA_Error

Acronym for eOAM_Software_FileTransferAck eOAMPDU, as defined in 13.4.6.6.4. It replaces
the following logical condition:

OPI(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | ResponseCode) AND
code == 0xFE AND
Opcode == 0x09 AND
FileTransferOpcode == 0x03 AND
ResponseCode != 0x00 AND
ResponseCode != 0x08

eOAMI_FTA_ErrorCommit

Acronym for eOAM_Software_FileTransferAck eOAMPDU, as defined in 13.4.6.6.4. excluding
eOAMPDUs carrying response codes 0x00 (OK), 0x08 (Timeout), and 0x09 (Busy). The values
for the response codes are defined in Table 13-19. This acronym replaces the following logical
condition:

eOAMI_FTA_Error AND ResponseCode != 0x09

Page | 33

eOAMI_FTA_OK

Acronym for eOAM_Software_FileTransferAck eOAMPDU, as defined in 13.4.6.6.4. It replaces
the following logical condition:

OPI(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | ResponseCode) AND
code == 0xFE AND
Opcode == 0x09 AND
FileTransferOpcode == 0x03 AND
ResponseCode == 0x00

eOAMI_FTA_Timeout

Acronym for eOAM_Software_FileTransferAck eOAMPDU, as defined in 13.4.6.6.4. It replaces
the following logical condition:

OPI(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | ResponseCode) AND
code == 0xFE AND
Opcode == 0x09 AND
FileTransferOpcode == 0x03 AND
ResponseCode == 0x08

eOAMI_FTD

Acronym for eOAM_Software_FileTransferData eOAMPDU, as defined in 13.4.6.6.3. It replaces
the following logical condition:

OPI(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode) AND
code == 0xFE AND
Opcode == 0x09 AND
FileTransferOpcode == 0x02

eOAMI_WR

Acronym for eOAM_Software_WriteRequest eOAMPDU, as defined in 13.4.6.6.2. It replaces the
following logical condition:

OPI(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | FileName) AND
code == 0xFE AND
Opcode == 0x09 AND
FileTransferOpcode == 0x01

eOAMR_FTA(block, code)

Acronym for eOAM_Software_FileTransferAck eOAMPDU, as defined in 13.4.6.6.4. It replaces
the following code:

code = 0xFE
Opcode = 0x09
FileTransferOpcode = 0x03
BlockNumber = block

Page | 34

ResponseCode = code
source_address = OLT or ONU MAC
OPR(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | ResponseCode)

eOAMR_FTA_Code(code)

Acronym for eOAMR_FTA(0x00-00, code). The argument code represents an 8-bit unsigned
integer that can take on values defined in Table 13-19.

eOAMR_FTA_End

Acronym for eOAMR_FTA(0x00-00, 0x00).

eOAMR_FTD(blockData, blockNumber)

Acronym for eOAM_Software_FileTransferData eOAMPDU, as defined in 13.4.6.6.3. It replaces
the following logical condition:

code = 0xFE
Opcode = 0x09
FileTransferOpcode = 0x03
BlockNumber = blockNumber
BlockWidth = size of blockData parameter in units of octets
BlockData = blockData
source_address = OLT MAC
OPR(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | BlockWidth | BlockData)

eOAMR_FTD_KeepAlive

Acronym for eOAM_Software_FileTransferData eOAMPDU, as defined in 13.4.6.6.3. It replaces
the following logical condition:

code = 0xFE
Opcode = 0x09
FileTransferOpcode = 0x03
BlockNumber = 0x00-00
BlockWidth = 0x00
source_address = OLT MAC
OPR(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | BlockNumber | BlockWidth)

eOAMR_Reboot

Acronym for eOAM_Set_Request eOAMPDU, as defined in 13.4.6.4, containing ONU Reboot
TLV (0xDD/0x00-01), as defined in 14.6.1.1. It replaces the following logical condition:

code = 0xFE
Opcode = 0x03
ONU_Reboot_TLV.Branch = 0xDD
ONU_Reboot_TLV.Leaf = 0x00-01
source_address = OLT MAC
OPR(source_address, flags, code, OUI_1904_4 | Opcode |
ONU_Reboot_TLV)

Page | 35

eOAMR_WR(fileName)

Acronym for eOAM_Software_WriteRequest eOAMPDU, as defined in 13.4.6.6.2. It replaces the
following code:

code = 0xFE
Opcode = 0x09
FileTransferOpcode = 0x01
FileName = fileName
source_address = OLT MAC
OPR(source_address, flags, code, OUI_1904_4 | Opcode |
FileTransferOpcode | FileName)

NMSI(commit, status)

This primitive is used to notify the NMS about the result of the software image committing
process, where the status parameter corresponds to the return code, as defined in Table 13-19.

When status is equal to OK, this primitive is used to notify the NMS about the successful
completion of the software image committing process per Figure 13-6.

NMSI(download, status)

This primitive is used to notify the NMS about the result of the software image download process,
where the status parameter corresponds to the return code, as defined in Table 13-19.

When status is equal to OK, this primitive is used to notify the NMS about the successful
completion of the software image download process per Figure 13-6.

NMSR(download, imageData, imageSize, fileName)

This primitive is used by the NMS to request the OLT to start the software image download
process per Figure 13-6, where the software image is delivered to the OLT within the
imageData parameter and the size of the received image is provided in the imageSize
parameter. The ONU software filename is provided in the fileName parameter.

13.5.2.6 State diagrams

The ONU shall implement the software image download process as shown in Figure 13-5.

The OLT shall implement the software image download process as shown in Figure 13-6. The state
diagram defined in Figure 13-6 is instantiated for each ONU and is operated independently as requested by
the NMS.

Page | 36

Figure 13-5—ONU software image download and committing
process state diagram

WAIT_WRITE_REQUEST

BEGIN

eOAMI_WR

eOAMI_FTA_Error OR
eOAMI_FTA_Timeout

else

ACK_ILLEGAL
eOAMR_FTA_Code (IllegalOp)

eOAMI_FTD OR
eOAMI_FTA_End OR
eOAMI_FTA_Error OR
eOAMI_FTA_Timeout

UCT

ACK_DISCARD
[stop retryTimer]
clearStorage (newImage)
eOAMR_FTA_Code (OK)

eOAMI_FTA_End eOAMI_WR

UCT

eO
AM

I_
FT

D

UCT

WAIT_DATA_TRANSFER
[start retryTimer, receiveTimeout]

retryTimer_done

TIMEOUT
retryCount --
eOAMR_FTA (nextBlock, Timeout)

elseretryCount == 0

resultCode == OK

SEND_ACK
eOAMR_FTA (nextBlock, resultCode)

UCT

else

blockWidth > 0 AND
blockNumber == nextBlock

WRITE_BLOCK
blockData = eOAMI_FTD.BlockData
resultCode = write (newImage, blockData)
nextBlock ++

else

resultCode == OK

CHECK_NEXT_BLOCK
[stop retryTimer]
blockWidth = eOAMI_FTD.BlockWidth
blockNumber = eOAMI_FTD.BlockNumber
retryCount = retryLimit
resultCode = OK

ACK_REQUEST
eOAMR_FTA_Code (resultCode)

storageDone

UCT

VERIFY_IMAGE
[stop retryTimer]
resultCode = verifyImage (newImage)

resultCode == OK

CONFIRM_IMAGE
eOAMR_FTA_Code (resultCode)

commitDone

else

ACK_BUSY
eOAMR_FTA_Code (Busy)

COMMIT_IMAGE
resultCode = commitImage (newImage)

eOAMI_Any

commitDone eOAMI_Any

ILLEGAL_FWR
[stop retryTimer]
eOAMR_FTA_Code (IllegalOp)

WRITE_REQUEST
resultCode = verifyStorage (newImage)
nextBlock = 0
retryCount = retryLimit
aOnuFwFileName = eOAMI_WR.FileName

Page | 37

Figure 13-6—OLT software image download
process state diagram

TRANSFER_ERROR
[stop retryTimer]
resultCode = eOAMI_FTA_Error.ResponseCode
NMSI (download, resultCode)

RESET_COUNTERS
localTimeoutCount = retryLimit
remoteTimeoutCount = retryLimit

UCT

else nextBlock != 0xFF-FF AND
nextBlock > lastBlock

eO
AM

I_
FT

A_
Er

ro
r

WAIT_FOR_ONU_RESPONSE

retryTimer_done

else

CHECK_ONU_RESPONSE

UCT

localTimeoutCount ≤ 0 OR
remoteTimeoutCount ≤ 0

retryTimer_done

LOCAL_TIMEOUT
localTimeoutCount --

UCT

nextBlock == 0xFF-FF AND
localTimeoutCount > 0

UCT

UCT

eOAMI_FTA_OK

NEW_BLOCK_NUMBER
nextBlock = eOAMI_FTA_OK.BlockNumber
localTimeoutCount = retryLimit
remoteTimeoutCount = retryLimit

ne
xt

Bl
oc

k
!=

 0
xF

F-
FF

 A
N

D
lo

ca
lT

im
eo

ut
C

ou
nt

 >
 0

WAIT

BEGIN

NMSR(download, imageData, imageSize, fileName)

SEND_WRITE_REQUEST
eOAMR_WR (fileName)
[start retryTimer, storeTimeout]

UCT

eOAMI_FTA_Timeout

UCT

INIT
nextBlock = 0xFF-FF
lastBlock = imageSize / blockSize -1
localTimeoutCount = retryLimit
remoteTimeoutCount = retryLimit

GET_NEXT_BLOCK
blockData = getBlock (imageData, nextBlock)

blockAvailable

SEND_BLOCK
eOAMR_FTD (blockData, nextBlock)
[start retryTimer, transmitTimeout]

SEND_KEEP_ALIVE
eOAMR_FTD_KeepAlive
[start retryTimer, transmitTimeout]

UCT

SEND_COMMIT_REQUEST
eOAMR_FTA_End
[start retryTimer, storeTimeout]

localTimeoutCount > 0 AND
remoteTimeoutCount > 0

eOAMI_FTA_OK

COMMIT_ERROR
[stop retryTimer]
resultCode = eOAMI_FTA_ErrorCommit.ResponseCode
NMSI (commit, resultCode)

eO
AM

I_
FT

A_
Er

ro
rC

om
m

it

L_TIMEOUT
localTimeoutCount --

R_TIMEOUT
remoteTimeoutCount --

CHECK_COMMIT_REQUEST

eOAMI_FTA_Timeout retryTimer_done

UCT UCT

else

UCT

UCT

UCT

COMMIT_SUCCESS
[stop retryTimer]
NMSI (commit, OK)
eOAMR_Reboot

UCT

COMMIT_TIMEOUT
[stop retryTimer]
NMSI (commit, Timeout)

BLOCK_TIMEOUT
[stop retryTimer]
NMSI (download, Timeout)

REMOTE_TIMEOUT
nextBlock = eOAMI_FTA_Timeout.BlockNumber
localTimeoutCount = retryLimit
remoteTimeoutCount --

	13 Extended OAM for Nx25G-EPON
	13.1 Introduction
	13.2 Requirements
	13.2.1 Frame size requirements
	13.2.2 Frame rate requirements
	13.2.3 Timing requirements
	13.2.4 Logical link requirements
	13.2.5 Virtual Link Control support

	13.3 Device discovery and capability discovery
	13.3.1 MPCP/OAM discovery process
	13.3.2 eOAM discovery process
	13.3.2.1 Requirements
	13.3.2.2 Ordering of Organization Specific Information TLVs
	13.3.2.2.1 Source OAM Client requirements
	13.3.2.2.2 Destination OAM Client requirements

	13.3.2.3 Message flow during eOAM discovery process

	13.3.3 OAM and eOAM keep-alive process

	13.4 eOAMPDU structure
	13.4.1 Extended OAM organizationally-unique identifier (OUI)
	13.4.2 eOAMPDU frame format
	13.4.3 TLV-oriented structure
	13.4.3.1 Variable Descriptor TLV
	13.4.3.2 Variable Container TLV
	13.4.3.3 TLVs carrying large values

	13.4.4 TLVs for 802.3 OAMPDUs
	13.4.4.1 Extended Information TLV
	13.4.4.2 Event Notification TLV
	13.4.4.2.1 LoS (0x11)
	13.4.4.2.2 Key Exchange Failure (0x12)
	13.4.4.2.3 Port Disabled (0x21)
	13.4.4.2.4 Power Failure (0x41)
	13.4.4.2.5 Statistics Alarm (0x81)
	13.4.4.2.6 ONU Busy (0x82)
	13.4.4.2.7 MAC Table Overflow (0x83)
	13.4.4.2.8 PON_IF_Switch (0x84)

	13.4.5 Multipart eOAMPDU response sequence
	13.4.6 eOAMPDU types
	13.4.6.1 eOAMPDU codes
	13.4.6.2 eOAM_Get_Request eOAMPDU
	13.4.6.3 eOAM_Get_Response eOAMPDU
	13.4.6.4 eOAM_Set_Request eOAMPDU
	13.4.6.5 eOAM_Set_Response eOAMPDU
	13.4.6.6 eOAM_Software eOAMPDU
	13.4.6.6.1 eOAM_Software eOAMPDU structure
	13.4.6.6.2 eOAM_Software_WriteRequest eOAMPDU
	13.4.6.6.3 eOAM_Software_FileTransferData eOAMPDU
	13.4.6.6.4 eOAM_Software_FileTransferAck eOAMPDU

	13.4.6.7 eOAM_KeyExchange eOAMPDU
	13.4.6.7.1 eOAM_KeyExchange eOAMPDU structure
	13.4.6.7.2 eOAM_KeyExchange_Assign eOAMPDU
	13.4.6.7.3 eOAM_KeyExchange_ACK eOAMPDU

	13.4.6.8 eOAM_Early_WakeUpOLT eOAMPDU
	13.4.6.9 eOAM_Early_WakeUpONU eOAMPDU
	13.4.6.10 eOAM_Sleep_Allowed eOAMPDU

	13.4.7 eOAMPDU return codes

	13.5 Software update
	13.5.1 Software image download process
	13.5.1.1 Download initiation step
	13.5.1.2 Download step
	13.5.1.3 Verification step
	13.5.1.4 Committing step

	13.5.2 State diagrams
	13.5.2.1 Constants
	13.5.2.2 Variables
	13.5.2.3 Timers
	13.5.2.4 Functions
	13.5.2.5 Primitives
	13.5.2.6 State diagrams

