CCORE LOS® Thoughts Encryption for 50G-EPON

CableLabs Steve Goeringer | s.goeringer@cablelabs.com Dr. Massimiliano Pala | m.pala@cablelabs.com

CableLabs[®]

Summary

- We appreciate
 - The need to support backwards compatibility
 - The need for fast resolution
 - The need to leverage existing silicon
- The encryption proposal can move forward
- We have concerns
 - No planned crypto agility
 - Support of next-generation key exchange such as recommend for PQC will be important in 2-5 years
 - No integrity scheme provided for the encrypted payloads
 - The IV coordination scheme looks valid, but also seems very complicated

Questions we were asked to address

- Is there a security basis for choosing zero-overhead or MACSec based encryption?
- Is the approach to IV construction that Glen has developed look good?
- Should we move to 256 bit encryption keys?
- Can an MKA PDU support a custom 16-bit value?
- Can we use the MKA key exchange protocol for multicast LLIDs?
- Can we leverage EAP/EAPOL?

Is there a security basis for choosing zero-eloss overhead or MACSec based encryption?

Counter/IV size

- It's our understanding that the MPCP size supported by the legacy zero-overhead approach drove key agreement/negotiation every 68 secs at 10Gpbs rates
- Key agreement does introduce the potential for failure (though this doesn't seem to have been a problem yet)
- High frequency key generation provides lots of samples against which cryptanalysts can look for systemic bias
- It would be better if perfect forward secrecy was supported on longer duration keys the 200 hour lifetime may be sufficient
- It's good to have a key rotation period configurable by the operator with a default of something less than a week
- Future support of crypto-agility and PQC
 - There is great uncertainty on the future of cryptography right now
 - Using highly adopted standards such as MACSec may provide a path to future support for crypto-agility that is easier than doing something that is architecture or implementation specific

Does the approach to IV construction proposed lobs by Broadcom look good?

- Yes, the IV construction looks fine
- It may be overly complicated
 - We haven't done the design work to see if it can be simplified

Should we move to 256 bit encryption keys?

- Yes but it is a design decision
 - Use IANA/IETF recommended cipher suites of at least 256 security bits
 - It may be prudent to prohibit 128 bit security even though this is still indicated as acceptable by NIST
- Nearly all standards authorities still allow 128 bit encryption keys
 - Integrity inclusion often recommended
 - Key agreement or other factors can lower effective security bits
- Resources
 - <u>https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf</u>
 - https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG 02102/BSI-TR-02102-1.pdf?__blob=publicationFile
 - https://www.europeanpaymentscouncil.eu/sites/default/files/kb/file/2022-03/EPC342-08%20v11.0%20Guidelines%20on%20Cryptographic%20Algorithms%20Usage%20and% 20Key%20Management.pdf
 - <u>https://www.rfc-editor.org/rfc/rfc7696</u>
 - https://www.keylength.com/en/

Questions needing further research

CableLabs[®]

- Can an MKA PDU support a custom 16-bit value?
 - Probably not, but still researching
- Can we use the MKA key exchange protocol for multicast LLIDs?
 - Not sure -- there would be mapping between LLIDs and their associated keys to other values in MKA
 - Perhaps the LLID might map to group Secure Association Keys (SAKs)
 - Key hierarchy for MKA is defined in 6.2 Key Hierarchy
 - There is a notion for group CAs in spec, but these are referring to multi-access LAN
- Can we leverage EAP/EAPOL?
 - Maybe, but the details matter for interoperability
 - EAP-TLS, EAP-FAST, EAP-TTLS, EAP-FAST, EAP-SIM, EAP-AKA, LEAP, PEAP
 - Leverage X.509 certificates?
 - Note that MKPDUs are conveyed by EAPOL PDUs as distinguished by their EAPOL packet type

CableLabs[®]

IEEE 802.1x-2020

- Section 6.2 Key hierarchy
 - Figure 6-3 MKA key hierarchy
- Section 11
 - Figure 11-7 MKPDU parameter set encoding
 - Figure 11-6 EAPOL-MKA packet body with MKPDU format
 - Table 11-7 PKPDU parameter sets

CableLabs[®]

CableLabs

cablelabs.com