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11 Security-oriented mechanisms 1 

11.1 Introduction 2 

11.2 Overview of SIEPON.4 security architecture 3 

11.2.1 Encryption entity 4 

11.2.1.1 Mapping between the encryption entities and logical links 5 

11.2.2 Location of encryption/decryption functions 6 

The Multi-channel Reconciliation Sublayer (MCRS) reconciles L logical links (i.e., MAC instances) above 7 

the sublayer with C physical layer channels below it. The MCRS is defined in IEEE Std 802.3, Clause 143. 8 

When security mechanisms are implemented within the MCRS sublayer, such enhanced sublayer is referred 9 

to as Secure MCRS (MCRSSEC) sublayer. The encryption function is located in the transmit path of the 10 

MCRSSEC sublayer, as illustrated in Figure 11-1(a), and the decryption function is located in the receive path 11 

of the MCRSSEC sublayer, as illustrated in Figure 11-1(b). 12 

 13 

 14 

Figure 11-1– Location of encryption/decryption function within MCRSSEC 15 

In the MCRSSEC transmit data path, a separate instance of the encryption function is located within every 16 

channel between the MCRS Input Process and the EnvTx buffer. In the MCRSSEC receive data path, a separate 17 

instance of the decryption function is located within every channel between the EnvRx buffer and the MCRS 18 

Output Process. 19 

11.2.3 Encryption function block diagram 20 

Each instance of the encryption function includes the Encryption Key Activation process (see 11.6.2) and the 21 

Encryption process (see 11.7.2). The block diagram of the encryption function is illustrated in Figure 11-2. 22 
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 1 

Figure 11-2 – Encryption function block diagram. 2 

The Encryption Key Activation process detects the transmission of either the envelope start header (ESH) or 3 

the envelope continuation header (ECH) and uses the data inside the header to generate an initialization vector 4 

IV and the encryption key. These two parameters are passed to the Encryption process which encrypts the 5 

given envelope as one cryptographic message.  6 

The encryption function encrypts the envelope payload, which includes data EQs, idle control characters /I/, 7 

and termination control characters /T/.  The envelope header itself bypasses the Encryption process and is 8 

transmitted unencrypted.  9 

The inter-envelope control characters include rate adjustment /RA/, inter-envelope-idle /IEI/, and inter-burst 10 

idle /IBI/ (see IEEE Std 802.3, 142.2.1). These control characters bypass the Encryption process and are 11 

transmitted unencrypted. 12 

11.2.4 Decryption function block diagram 13 

Each instance of the decryption function includes the Decryption Key Activation process (see 11.6.2) and 14 

the Decryption process (see 11.7.3). The block diagram of the decryption function is illustrated in Figure 11-15 

x3. 16 
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 1 

Figure 11-x3 – Decryption function block diagram. 2 

The Decryption Key Activation process detects the reception of either the envelope start header (ESH) or the 3 

envelope continuation header (ECH) and uses the data inside the header to generate an initialization vector 4 

IV and the decryption key. These two parameters are passed to the Decryption process which decrypts the 5 

given envelope as one cryptographic message. 6 

The decryption function decrypts only the envelope payload, which includes data EQs, idle control characters 7 

/I/, and termination control characters /T/.  The envelope header itself is received unencrypted and bypasses 8 

the Decryption process.  9 

The inter-envelope control characters include rate adjustment /RA/, inter-envelope-idle /IEI/, and inter-burst 10 

idle /IBI/ (see IEEE Std 802.3, 142.2.1). These control characters are received unencrypted and bypass the 11 

Decryption process. 12 

11.2.5 Latency requirements 13 

The latency introduced into the MCRS transmit path by the encryption function (see Figure 11-1(a)) shall 14 

remain constant (to within 1 EQT), regardless of whether the encryption is enabled or disabled. 15 

The latency introduced into the MCRS receive path by the decryption function (see Figure 11-1(b)) shall 16 

remain constant (to within 1 EQT), regardless of whether the decryption is enabled or disabled. 17 

11.2.6 Establishment of security mechanisms 18 

 19 

EQ type demux

Decryption
Key Activation 

Process #n

Decryption 
process #n

Key, IV

MCRS Output Process

/RA/

/IEI/

/IBI/

data

/I/

/T/

ESH

ECH

EnvRx

Decryption 

function



6 
Copyright © 2023 IEEE. All rights reserved. 

This is an unapproved IEEE Standards Draft, subject to change. 

11.3 ONU authentication  1 

11.4 Initial Security Association Key exchange  2 

11.5 Session key distribution protocol 3 

11.6 Session key activation protocol 4 

11.7 Cryptographic method 5 

11.7.1 Introduction 6 

In SIEPON.4 systems, the OLT and ONUs encrypt data using the AES Counter mode (AES-CTR). 7 

The AES-CTR is a confidentiality mode that applies the forward cipher to a set of input blocks, called 8 

counters, to produce a sequence of output blocks that are XOR-ed with the plaintext to produce the ciphertext, 9 

and vice versa. The AES-CTR mode requires that all counter values be distinct across all of the messages 10 

that are encrypted under the given key. For the detailed specification of the AES-CTR refer to NIST SP 800-11 

38A, 6.5.  12 

11.7.1.1 Envelope-based encryption 13 

The concept of transmission envelope is defined in IEEE Std 802.3, 143.2.4.2. An envelope encapsulates 14 

continuous transmission by a specific MAC instance (LLID) on one MCRS channel. 15 

In SIEPON.4 cryptographic method, the encryption is based on an envelope structure, i.e., an envelope 16 

payload constitutes the plaintext message to be encrypted.  The envelope headers themselves are 17 

not encrypted. An entire envelope payload is encrypted using the same session key. A new session key may 18 

only activate during the reception or transmission of an envelope header (refer to Session Key Activation 19 

protocol in 11.6). 20 

The cipher block size is 128 bits. Each block of plaintext includes exactly two EQs. Some plaintext 21 

blocks are only partially-encrypted, i.e., the above-mentioned XOR operation is applied to only a 22 

portion of the plaintext block. The reason for this is explained in 11.7.2.1.  23 

11.7.1.2 Location of the encryption/decryption functional blocks 24 

The encryption and decryption functional blocks are located within the secure MCRS (MCRS SEC) sublayer, 25 

as detailed in 11.2.2. 26 

11.7.2 Encryption process 27 

The encryption process applies the forward cipher function to each counter block, and the resulting output 28 

blocks are XOR-ed with the corresponding plaintext blocks to produce the ciphertext blocks (see Figure 11-29 

xx1).  30 

The first counter block in a message (Counter 1) is initialized to the value called Initialization Vector (IV). 31 

The IV value used for the encryption is calculated by the OLT encryption key activation process (see Figure 32 

11-8) and by the ONU encryption key activation process (see Figure 11-10). Every subsequent counter block 33 

associated with the given message is constructed by incrementing the value of the previous counter block by 34 

1. 35 

If the envelope payload length is odd, the last block will only contain one EQ. In such case, the most 36 

significant 64 bits of the last output block are used for the XOR operation and the remaining 64 least 37 

significant bits of the last output block are discarded. 38 
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 1 

Figure 11-xx1 – Block diagram of the encryption process 2 

For every block of plaintext, a mask is constructed to block-out the control characters (see 11.7.5.2). This 3 

mask is AND-ed with the output of the AES block cipher, resulting in the unencrypted control characters 4 

being placed in the ciphertext blocks.  5 

In the encryption process, the forward cipher block operations can be performed in parallel. Moreover, the 6 

forward cipher functions can be applied to the counters prior to the availability of the plaintext data, if the 7 

corresponding counter block values can be determined. 8 

11.7.3 Decryption process 9 

The decryption process applies the forward cipher function to each counter block, and the resulting output 10 

blocks are XOR-ed with the corresponding ciphertext blocks to recover the plaintext blocks (see Figure 11-11 

xx2).  12 

Similarly to that in the encryption process, the first counter block in a message (Counter 1) is initialized to 13 

the value called Initialization Vector (IV). The IV value used for the decryption is calculated by the OLT and 14 

ONU decryption key activation process (see Figure 11-9). Every subsequent counter block associated with 15 

the given message is constructed by incrementing the value of the previous counter block by 1.  16 

For a given encrypted message (i.e., an envelope), the IV and the subsequent counter block values applied 17 

by the decryption process match the IV and the counter values that were previously applied by the encryption 18 

process to encrypt the same message. 19 

If the envelope payload length is odd, the last block will only contain one EQ. In such case, the most 20 

significant 64 bits of the last output block are used for the XOR operation and the remaining 64 least 21 

significant bits of the last output block are discarded. 22 
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 1 

Figure 11-xx2 – Block diagram of the decryption process 2 

For every block of ciphertext, a mask is constructed to block-out the control characters (see 11.7.5.2). This 3 

mask is AND-ed with the output of the AES block cipher, resulting in the unencrypted control characters 4 

being placed in the plaintext blocks. 5 

In the decryption process, the forward cipher block operations can be performed in parallel. Moreover, the 6 

forward cipher functions can be applied to the counters prior to the availability of the ciphertext data, if the 7 

corresponding counter block values can be determined. 8 

11.7.4 Initialization Vector (IV) construction 9 

The sequence of counters must have the property that each block in the sequence is different from every other 10 

block. This condition is not restricted to a single message; across all of the messages that are encrypted under 11 

the given key, all of the counters must be distinct. This condition is satisfied by ensuring that IV values 12 

calculated for every message are distinct for any message (envelope) encrypted with the same key. 13 

To encrypt a message, the IV is calculated by the encryption key activation processes at the OLT (see Figure 14 

11-8) and at the ONU (see Figure 11-10) when an Envelope Start Header (ESH) is observed in the transmit 15 

path of the MCRSSEC sublayer. 16 

To decrypt a message, the IV is calculated by the decryption key activation processes at the OLT and the 17 

ONU (see Figure 11-9) when an Envelope Start Header (ESH) is observed in the receive path of the MCRSSEC 18 

sublayer.  19 

The data within the envelope header together with the index of the channel on which this envelope header 20 

was transmitted or received comprise the input parameters to the CalculateIV(…) function that derives 21 

the IV values in the above mentioned processes (see 11.6.2.2). It is critical that for any given encrypted 22 

message (envelope), the IV calculated by the decryption key activation process matched the IV calculated by 23 

the encryption key activation process. 24 
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 1 

Figure 11-xx3 – Structure of the Initialization Vector 2 

The structure of the IV is illustrated in Figure 11-xx3. The IV consists of the following four fields: 3 

ChannelIndex –  Index of the channel on which the encrypted message is being transmitted or 4 

received. The most significant bit (bit 127) represents the direction (0 – 5 

downstream; 1- upstream), and bits [126:120] represent the channel number. 6 

For example, the value 0x01 represents the downstream channel 1 (DC1) and 7 

the value 0x80 represents the upstream channel 0 (UC0). The MCRS 8 

channels are explained in IEEE 802.3, 143.4.1.1. 9 

The inclusion of this field ensures that in a situation when multiple ESHs 10 

to/from the same ONU are transmitted at the same time (i.e., the IVs have the 11 

same MessageTime filed value) on different channels, their associated IV 12 

values would still be distinct. 13 

MacAddress –  This is the MAC address of the device that encrypted the given envelope. In 14 

the downstream direction, this is the MAC address associated with the PON 15 

port of the OLT. In the upstream direction, this is the MAC address associated 16 

with the PON port of the transmitting ONU.   17 

To calculate the IV for the decryption, the ONU uses the OLT’s MAC address 18 

known to it from the MPCP registration step. The OLT also has a prior 19 

knowledge of MAC addresses of all connected ONUs, but it needs to 20 

determine which specific ONU sourced the given envelope. It does that by 21 

first extracting the LLID value from the ESH and then looking up the MAC 22 

address associated with this LLID. 23 

MessageTime –  This field represents a timestamp of cipher clock captured at the moment 24 

when the encryption key activation process observes the ESH in the 25 

MCRSSEC transmit path or the decryption key activation process observes the 26 

ESH in the MCRSSEC receive path. The cipher clock runs synchronously with 27 

the MPCP clock, but otherwise is a distinct clock, as explained in 11.7.4.1.  28 

This field ensures that all the counter block values used on the same channel 29 

(i.e., the IVs have the same ChannelIndex values) and with the same session 30 

key are distinct.  31 

BlockIndex –  The block index field is set to zero when an envelope header is detected.  This 32 

field is incremented by 1 for every subsequent counter block in the same 33 

envelope. 34 

11.7.4.1 Cipher clock 35 

The cipher clock is a 48-bit counter that runs synchronously with the MPCP clock (LocalTime), but is a 36 

distinct clock. The OLT and the ONUs contain versions of this clock that is used as a timestamp source for 37 

the IV field MessageTime. At the OLT, a single clock, referred to as CipherClock is used for IV construction 38 

in both the encryption and the decryption functions. At the ONU, there are two instances of the cipher clock: 39 

the TxCipherClock that is used to construct the IV for the encryption function, and the RxCipherClock that 40 

is used to construct the IV for the decryption function. The relationship between the OLT’s CipherClock and 41 

the ONU’s RxCipherClock and TxCipherClock is illustrated in Figure 11-xx4. 42 
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 1 

Figure 11-xx4 – Relationship of OLT’s CipherClock and ONU’s TxCipherClock and RxCipherClock 2 

The MPCP clock is a 32-bit counter that increments by one every EQT. The initial synchronization of the 3 

MPCP clock takes place during ONU’s MPCP discovery and registration and is described in IEEE Std 802.3, 4 

144.3.1.1. 5 

The origin point of the MPCP clock (counter) at the ONU is advanced relative to the origin point of the 6 

MPCP clock at the OLT by the upstream propagation time. The desired effect of such shift is that an envelope 7 

header transmitted by the ONU at its local MPCP time Ti is received by the OLT also at its local MPCP time 8 

Ti. 9 

The CipherClock in the OLT is an extension of the OLT MPCP clock constructed by prepending 16 most-10 

significant bits to the MPCP clock, i.e., LocalTime counter (see IEEE 802.3, 144.2.1.1). The carry-over 11 

bit from the LocalTime counter increments the first bit of the 16-bit extension portion (i.e., the bit 32 of 12 

the 48-bit CipherClock counter). 13 

The TxCipherClock in the ONU is an extension of the ONU MPCP clock and is constructed in a manner 14 

similar to the OLT CipherClock construction. Because the OLT CipherClock and the ONU TxCipherClock 15 

extend their respective MPCP clocks, they preserve their relative shift, ensuring that the MessageTime value 16 

used to construct the IV for the encryption at the OLT matches the MessageTime value used to construct the 17 

IV for the decryption at the ONU. 18 

The RxCipherClock at the ONU is a separate 48-bit clock increments synchronously with the ONU MPCP 19 

clock, but is not an extension of the MPCP clock (i.e., the low 32 bits of the RxCipherClock are not equal to 20 

ONU’s MPCP LocalTime value). The origin point of the RxCipherClock at the ONU is delayed relative 21 

to the origin point of the CipherClock at the OLT by the downstream propagation time. The desired effect of 22 

such shift is that an envelope header transmitted by the OLT when its CipherClock value is Ti is received by 23 

the ONU at its RxCipherClock value is also Ti. 24 
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 Cipher clock alignment in the upstream 1 

The MCRS defined in IEEE Std 802.3, Clause 143 ensures that an envelope header (EH) transmitted by the 2 

ONU at a specific local time value is received at that exact local time at the OLT. To achieve that, the ONU 3 

sets the EPAM field in the EH to equal 6 least significant bits of its MPCP time (EH.EPAM = 4 

LocalTime[5:0]).  5 

At the OLT, this EH is received (i.e., is written) into the EnvRx buffer into row with index equal to EH.EPAM. 6 

This EH is then read from the EnvRx buffer at the exact time when the OLT’s LocalTime[5:0] are equal 7 

to the row index (i.e., when LocalTime[5:0] = EH.EPAM). As the 6 LSB are aligned, so are the entire 8 

extended MPCP clock values at the ONU and OLT are equal.  9 

Since the CipherClock at the OLT and the TxCipherClock at the ONU are the extensions of their respective 10 

MPCP clocks, it follows that the value of ONU’s TxCipherClock latched at the moment when the EH is 11 

written into EnvTx buffer at the ONU matches the value of OLT’s CipherClock latched at the moment when 12 

the ESH is read from the EnvRx buffer at the OLT. 13 

 Cipher clock alignment in the downstream 14 

In the downstream direction, the OLT sets the EPAM field in the EH to equal 6 least significant bits of its 15 

MPCP time (EH.EPAM = LocalTime[5:0]).  16 

At the ONU, this EH is received (i.e., is written) into the EnvRx buffer into row with index equal to 17 

EH.EPAM. This EH is then read from the EnvRx buffer at the exact time when the 6 LSB of the ONU’s 18 

RxCipherClock are equal to the row index. (Note however, that ONU’s LocalTime[5:0]  EH.EPAM 19 

because the ONU’s MPCP clock is advanced by the upstream propagation time, see Figure 11-xx4.) 20 

As the 6 LSB are aligned, it follows that the value of OLT’s CipherClock latched at the moment when the 21 

EH was written into EnvTx buffer at the OLT matches the value of ONU’s RxCipherClock latched at the 22 

moment when the EH was read from the EnvRx buffer at the ONU. 23 

 Initial cipher clock synchronization 24 

TBD 25 

 Implementation options (informative) 26 

At the OLT, the CipherClock and MPCP clock can share the same 48-bit variable (register), with the MPCP 27 

clock occupying the 32 least-significant bits (i.e., LocalTime[31:0] = CipherClock[31:0]). 28 

At the ONU, an observation can be made that the time frame reference of RxCipherClock lags behind the 29 

time frame reference of the TxCipherClock by a fixed interval equal to ONU’s round trip time. Thus, it is 30 

possible to represent the MPCP clock, the TxCipherClock and the RxCipherClock by the same 48-bit variable 31 

(register).  The TxCipherClock is represented by the full register value, while the ONU MPCP clock is 32 

represented by the 32 least-significant bits (i.e., LocalTime[31:0] = TxCipherClock[31:0]).  The 33 

RxCipherClock can be derived by subtracting the round-trip time (a fixed constant) from the value of the 34 

TxCipherClock: RxCipherClock[47:0] = TxCipherClock[47:0] – RTT. 35 

11.7.4.2 CalculateIV(…) function 36 

The function CalculateIV(ch, eh) is used by the encryption and decryption key activation processes 37 

in the OLT and ONUs. In each of these processes, the behavior of this function is similar at the high level, 38 

but differs in specific minor details, as explained below. This function executes within one MPCP clock cycle 39 
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(in under one EQT), therefore the 6 least-significant bits of the relevant cipher clock counter match the value 1 

of the EPAM field of the EH (see IEEE Std 802.3, 143.3.2). 2 

In the OLT encryption key activation process, the function CalculateIV(ch, eh) is called at the 3 

moment when an envelope header (EH) eh is observed in the MCRS transmit path on channel ch (see Figure 4 

11-8).  The following is the definition of the function CalculateIV(ch, eh) for the OLT encryption 5 

key activation process: 6 

int128 CalculateIV( ch, eh ) 7 

{ 8 

iv.ChannelIndex = ch;     // Channel index 9 

iv.MacAddress   = OLT_MAC_ADDRESS; // Known constant 10 

iv.MessageTime  = CipherClock;   // Latch OLT’s cipher clock 11 

iv.BlockIndex   = 0;    // Reset block index 12 

return iv; 13 

} 14 

In the OLT decryption key activation process, the function CalculateIV(ch, eh) is called at the 15 

moment when an envelope header (EH) eh is observed in the MCRS receive path on channel ch (see Figure 16 

11-9).  The following is the definition of the function CalculateIV(ch, eh) for the OLT decryption 17 

key activation process: 18 

int128 CalculateIV( ch, eh ) 19 

{ 20 

iv.ChannelIndex = ch;     // Channel index 21 

iv.MacAddress   = MacAddr[eh.llid]; // MAC address table lookup 22 

iv.MessageTime  = CipherClock;   // Latch OLT’s cipher clock 23 

iv.BlockIndex   = 0;    // Reset block index 24 

return iv; 25 

} 26 

Note that, in this function, the OLT needs to perform a table lookup to retrieve the MAC address associated 27 

with a given LLID value. 28 

In the ONU encryption key activation process, the function CalculateIV(ch, eh) is called at the 29 

moment when an envelope header (EH) eh is observed in the MCRS transmit path on channel ch (see Figure 30 

11-10).  The following is the definition of the function CalculateIV(ch, eh) for the ONU encryption 31 

key activation process: 32 

int128 CalculateIV( ch, eh ) 33 

{ 34 

iv.ChannelIndex = ch;     // Channel index 35 

iv.MacAddress   = ONU_MAC_ADDRESS; // Known constant 36 

iv.MessageTime  = TxCipherClock;   // Latch ONU’s tx. cipher clock 37 

iv.BlockIndex   = 0;    // Reset block counter 38 

return iv; 39 

} 40 

In the ONU decryption key activation process, the function CalculateIV(ch, eh) is called at the 41 

moment when an envelope header (EH) eh is observed in the MCRS receive path on channel ch (see Figure 42 

11-9).  The following is the definition of the function CalculateIV(ch, eh) for the ONU decryption 43 

key activation process: 44 
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int128 CalculateIV( ch, eh ) 1 

{ 2 

iv.ChannelIndex = ch;     // Channel index 3 

iv.MacAddress   = OLT_MAC_ADDRESS; // Learned at registration 4 

iv.MessageTime  = RxCipherClock;   // Latch ONU’s rx. cipher clock 5 

iv.BlockIndex   = 0;    // Reset block index 6 

return iv; 7 

} 8 

11.7.5 Encrypted envelope format 9 

To encrypt a message, an envelope payload is divided in 128-bit blocks of plaintext and the encryption 10 

operation is performed as described in 11.7.2. To decrypt a message, an envelope payload is divided in 128-11 

bit blocks of ciphertext and the decryption operation is performed as described in 11.7.3.  12 

Exactly two EQs form a plaintext or ciphertext block, except in the case of odd payload length, the last block 13 

contains a single EQ (see Figure 11-xx5). In every envelope, the first payload block is aligned to the end of 14 

envelope header. The envelope header itself is not encrypted.  15 
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Figure 11-xx5 – EQ-to-block conversion 1 

11.7.5.1 EQ types that bypass the encryption and decryption processes 2 

As was shown in 11.2.3 and 11.2.4, there are several types of EQs that can appear in the MCRS data path. 3 

Some of the EQ types represent control sequences used to signal frame, envelope, or burst delineation (see 4 

IEEE Std 802.3, 143.3.3.6.2). These EQs require special treatment by the encryption and the decryption 5 

functions, as illustrated in Figure 11-xx6 and detailed below: 6 

Rate Adjustment (RATE_ADJUST_EQ):   7 

The MCRS (MCRSSEC) periodically inserts a series of 33 RATE_ADJUST_EQs to pace the MAC 8 

data rate in order to allow the FEC parity data insertion by the PCS. The position of 9 

RATE_ADJUST_EQ insertion is determined by the Input process of the MCRS Transmit function 10 

and by the Output process of the MCRS Receive function. The RATE_ADJUST_EQ insertion by 11 

the Input and the Output processes may happen at different positions within an envelope.  12 

The RATE_ADJUST_EQs are not considered part of envelope (i.e., they are not accounted in 13 

envelope length value). As described in 11.2.3 and 11.2.4, these EQs bypass the 14 

Encryption/Decryption processes, i.e., they are not encrypted and they do not affect the plaintext or 15 

the ciphertext block alignment. The sequence of RATE_ADJUST_EQs may be inserted in the 16 

middle of single plaintext or ciphertext block, as illustrated in Figure 11-xx6.  17 

Inter-Envelope Idle (IEI_EQ):   18 

The IEI_EQs are inserted when there is no envelope available for transmission, while the 19 

transmission channel itself is active. The IEI_EQs are not part of an envelope. However, unlike the 20 

RATE_ADJUST_EQs, they cannot appear in the middle of an envelope. Within the encryption and 21 

decryption functions, the IEI_EQs bypass the Encryption/Decryption processes, i.e., they are not 22 

encrypted and they do not affect the plaintext or the ciphertext block alignment. 23 

Inter-Burst Idle (IBI_EQ):   24 

The IBI_EQs are inserted when the transmission channel is not active, such as between transmission 25 

bursts. The IBI_EQs can only appear in the upstream and are not considered part of an envelope. 26 

Within the encryption and decryption functions, the /IBI/ characters bypass the 27 

Encryption/Decryption processes, i.e., they are not encrypted and they do not affect the plaintext or 28 

the ciphertext block alignment. 29 
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 1 

Figure 11-xx6 – Handling of special EQ types by encryption/decryption function 2 

11.7.5.2 Handling of the control characters in envelope payloads 3 

There are several EQ types that can appear in the payload portion of an envelope: data EQ, Termination EQ, 4 

and (regular) Idle EQ. Some of these EQ types may include control characters /T/ and /I/. In order to support 5 

64b/66b encoding in the PCS, these control characters are passed from the input to the output of the 6 

encryption or the decryption process unmodified. 7 

As explained in 11.7.2 and 11.7.3, the control characters are left unencrypted by applying a mask to the 8 

output of the AES block cipher, before that output is XOR-ed with the plaintext or the ciphertext blocks.  9 

Within the MCRS, an EQ is represented by a 72-bit structure, consisting of 8 control bits Ctrl[0:7] and 10 

8 data octets Data [0:7] (see IEEE Std 802.3, 143.2.4.1). If the Ctrl[i] bit is 1, then the corresponding 11 
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Data[i] octet represents a control character, which shall be left unencrypted. Otherwise, the Data[i] is 1 

a data octet, which shall be encrypted.  The Table 11-x1 shows all EQ types that may be encountered in the 2 

envelope payload and the associated EQ mask. The masks associated with two EQs that form a plaintext or 3 

a ciphertext block are combined to form a 128-bit mask that is to be applied to the output of the AES block 4 

cipher. 5 

Table 11-x1 – EQ types and the associated encryption EQ masks 6 

EQ type 
Ctrl[0:7] 

(bin) 
Data[0:7] 

(hex) 
Mask 
(hex) 

Data 00000000 xx-xx-xx-xx-xx-xx-xx-xx FF-FF-FF-FF-FF-FF-FF-FF 

Terminate 

00000001 xx-xx-xx-xx-xx-xx-xx-FD FF-FF-FF-FF-FF-FF-FF-00 

00000011 xx-xx-xx-xx-xx-xx-FD-07 FF-FF-FF-FF-FF-FF-00-00 

00000111 xx-xx-xx-xx-xx-FD-07-07 FF-FF-FF-FF-FF-00-00-00 

00001111 xx-xx-xx-xx-FD-07-07-07 FF-FF-FF-FF-00-00-00-00 

00011111 xx-xx-xx-FD-07-07-07-07 FF-FF-FF-00-00-00-00-00 

00111111 xx-xx-FD-07-07-07-07-07 FF-FF-00-00-00-00-00-00 

01111111 xx-FD-07-07-07-07-07-07 FF-00-00-00-00-00-00-00 

11111111 FD-07-07-07-07-07-07-07 00-00-00-00-00-00-00-00 

Idle 11111111 07-07-07-07-07-07-07-07 00-00-00-00-00-00-00-00 

Note: xx indicates ‘any value’ 7 

 8 

 9 
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