
SIEPON.4 Authentication Proposal
v0.5 – 2023-12-14
Part 1: Initial Key Derivation & Credentials

Craig Pratt | Lead Software Architect
c.pratt@cablelabs.com

ONU Encryption Initialization
OLT ONU

Both parties sending data in the clear

MPCP Discovery and Registration

eOAM Discovery

Authentication/Credential Provisioning

Initial Shared Key Derivation

Frames encrypted with new session key

Initial Key Activation

Session Key Activation

Frames encrypted with initial key

Loop

Session Key Update

Critical information
must be encrypted
at the packet level

SIEPON MA - Approaches/assumptions:
1. SIEPON should enable authentication methods, while

allowing the policy to be dictated/described by the
operator

2. Credentials must be attested/verified
• e.g. via challenge/response and hash/signatures

3. Trust store/lists must be operator-configurable (on OLT
and ONU) and initialization/updates to the ONU trust
store should be securely updatable by the operator via
the OLT.

4. Initial AES key must ephemeral and mutually verified
• To provide forward secrecy and prevent Machine in the Middle

(MITM) attacks
5. Having mandatory authentication with simplified

credentials is better than having optional/no
authentication

6

Questions to answer
• Q1b: How should authentication be performed?

• Have looked into a couple options...
• Q2b: What formats of credentials are allowed?

• X.509 is widely supported and supports a wide variety of PKI systems,
but has some complexities. Should we support more than one
credential type and if so, which?

• Q3: How should initial authentication be performed?
• What credential/key(s) should be built into the ONU for authentication?
• What information should be provided by the installer/operator during

onboarding to enable initial authentication?
• Q4: How to enable and configure OLT authentication?

• ONU must have a way to validate the OLT to provide full mutual
authentication, but how?

8

Q1b:
How should authentication be performed?

• Proposal: Use 802.1X with EAP-
TLS v1.3

• Can deal with limited frame sizes
• Concept of ”Controlled Port” and

“Supplicant” matches up well with
OLT and ONU, respectively

• Allows for use of different
credential types (pubkey & X.509)

• Widely supported and
maintained/updated technology

• TLS 1.3 encrypts sensitive
handshake fields (like the
cert/public key) and provides
key data export

9

Q1b:
How should authentication be performed?
• Secondary discoveries

• TLS 1.3 performs ECDH first to provide ”early data” feature and encrypts the
handshake data – including certificates and public keys. (RFC-8446 4.2.10)

• Was working under the assumption that we need to enable frame-level encryption to
encrypt the handshake (to protect certs and pubkeys) à not necessary in TLS 1.3

• Also means we would be performing 2 ECDH exchanges if/when SIEPON did its
own à twice as much computation and extra round trips

• Need to not disclose sensitive data in EAP Identity, since it’s not protected
• RFC-5705 (TLS Exporters) provides a standard way to extract keying

material
• Can use this instead of specifying HKDF to derive keys from the premaster secret
• Getting to the premaster secret is not well supported by most TLS libraries

• Recommendation:
• Take advantage of TLS 1.3’s ECDH early_data/PSK for handshake
• Use TLS Exporter for establishing initial key

10

80
2.

1X R
epeat

OLT ONU

Retrieve ONU identity

Authentication Flow using 802.1X (initial proposal)

MPCP Discovery and Registration, eOAM Discovery, and initial key activation complete

EAP-Request Identity

EAP-Response Identity
Look up ID in database

Determine expected credential

EAP-Response

EAP-Request
Process Request/Form Response

Form cred-specific Request

Complete cred-specific auth EAP-Success

All LLIDs encrypted using initial EDH-derived AES key

eOAM_Set_Response(InitialKeyMac, c_hmac)

EAP-Request

Confirm s_hmac
Compute c_hmac (pmk/msk | dhe_key)

Auth complete – but initial ECDHE-derived key needs to be confirmed authentic

eOAM_Set_Request(InitialKey, s_hmac)Compute s_hmac (dhe_key | pmk/msk)

Confirm c_hmac

Want to enable
frame encryption to

protect initial
exchange

Needs to be computed
differently to prevent

mirroring

This will involve
cryptographic

credential verification

80
2.

1X
/E

AP
EA

P-
TL

S
1.
2

OLT ONU

Details we didn’t get into last meeting...

EAP-Request Identity
EAP-Response Identity

ClientHello(ver, supported_cipher_suites, c_rand)

ServerHello(ver, cipher, s_rand, s_cert, cert_req)

All LLIDs encrypted using initial EDH-derived AES key

Auth complete

Frame-level
encryption enabled
via draft SIEPON.4

Diffie-Hellman
exchange

. . .

TLS ClientTLS Server

Choose cipher suite, etc

Validate server cert, form responseCertificate, Client Key Exchange(c_key_data),
Certificate Verify(c_key_data, signature)

Compute initial key from SS via TLS-ExportCompute initial key from SS via TLS-Export

Verify initial ECH-derived kay is authentic using HKDF mac of key+TLS shared secret

ServerKeyExchange(s_key_data, signature)

ChangeCIpherSpec, Finished

TLS cipher-
encrypted
records

Validate client cert, form response

Problem: Sensitive
identification and provisioning

info in certs, so want to encrypt
them to prevent observation

Solution: Enable frame encryption
before starting authentication

Encapsulated in
EAP Request &

Response
packets.

Fragmented/
assembled by

EAPOL

80
2.

1X
/E

AP
EA

P-
TL

S
1.
3

OLT ONU

Authentication Flow using 802.1X (“new and improved”)

EAP-Request Identity (“SIEPON.4:OLT”)
EAP-Response Identity (“SIEPON.4:ONU”)

ClientHello (ver, supported_groups, key_share, cipher_suites, ...)

ServerHello (ver, key_share, cipher, ...)

Compute SS

Auth complete

Frame-level
encryption not yet

enabled

Encapsulated in
EAP Request &

Response
packets.

Fragmented/asse
mbled by EAPOL

TLS ClientTLS Server

Choose DHE group, gen DHE point, compute SS, select cipher

EncryptedExtensions, Certificate/pubkey (encrypted), ...

Gen DHE group list , gen DHE points, gen cipher list

Decrypt & process cert, form responseCertificate (encrypted), .., Finished

Compute initial key from SS via TLS-ExportCompute initial key from SS via TLS-Export

All LLIDs encrypted using initial EDH-derived AES key

TLS cipher-
encrypted
records

Sensitive identification
and operator provisioning
info in certs is encrypted –

so no need to enable
frame-level encryption

until after auth complete

MPCP Discovery and Registration and eOAM Discovery complete

TLS 1.3 ClientHello

How it works - TLS 1.3 ”early data”
• TLS 1.3 client enumerates capabilities separately instead of a

flat list of “cipher suites” (RFC-8446 7.5, RFC-5705)

secp256r1supported
groups

key_share

secp521r1 x448

EC point (x,y) scalar, u

server picks an ECC group it wants to use generates its own key_share

TLS 1.3 ServerHello
key_share secp521r1

client uses server’s key_share to determine which curve was selected
and calculate the same symmetric key and decrypt cert/pubkey

EC point (x,y)

EC point (x,y)

ECC+
HKIM

encryptcert server X.509 cert or pubkey

server picks symmetric TLS cipher, signature type

symmetric cipher
key k for early data

SIEPON.4 Initial Key Derivation

• TLS 1.3 Early Data provides ephemeral
key management, but now how do we
derive the SIEPON.4 initial key?

• A mandatory TLS extension called “TLS
Exporter”

• Uses HKDF (HMAC-based Key Derivation
Function), which can derive a key of any
length from a shared secret – like the SS
you get from a EC Diffie-Hellman exchange

• Doesn’t expose the TLS master secret/pre-
master secret

• Well supported by existing TLS libraries
• Example...

context value

TLS prem
aster secret

SIEPON.4 Initial
Key

label

128/256-bits

TLS
Export/
HKDF

SIEPON.4 Initial Key Derivation via TLS Export

if (SSL_accept(ssl) <= 0) {

ERR_print_errors_fp(stderr);

} else {

printf("TLS handshake successful\n");

// Export keying material

const char* label = "EXPORTER_SIEPON4";

const size_t len = 32; // Length of keying material

unsigned char keying_material[len];

SSL_export_keying_material(ssl, keying_material, len, label, strlen(label), NULL, 0, 0);

printf("Exported Keying Material: ");

for (size_t i = 0; i < len; i++) {

printf("%02x", keying_material[i]);

}

• OpenSSL w/ TLS 1.3 (server)

$./tls-server-exporter-1

Server listening on port 8080...

Connection accepted from 127.0.0.1:57773

TLS handshake successful

Exported Keying Material: 81a764a880d3505772ee6907cdd8161be9e6024fdcfd3e96a972c52376191c7a

SIEPON.4 Initial Key Derivation via TLS Export

if (SSL_connect(ssl) <= 0) {

ERR_print_errors_fp(stderr);

} else {

printf("TLS handshake successful\n");

// Export keying material

const char* label = "EXPORTER_SIEPON4";

const size_t len = 32; // Length of keying material

unsigned char keying_material[len];

SSL_export_keying_material(ssl, keying_material, len, label, strlen(label), NULL, 0, 0);

printf("Exported Keying Material: ");

for (size_t i = 0; i < len; i++) {

printf("%02x", keying_material[i]);

}

• OpenSSL w/ TLS 1.3 (server)

$./tls-client-exporter-1

TLS handshake successful

Exported Keying Material: 81a764a880d3505772ee6907cdd8161be9e6024fdcfd3e96a972c52376191c7a

Updated Initialization
Sequence

• Auth first
• Single (EC)DHE
• Extraction from premater

secret (DHE)

Q1b Discussion:
How should authentication be performed?

• EAP can be a can of worms if underspecified
• Open-ended options will reduce interoperability
• Need to specify enough to achieve consistent interoperability

• TLS 1.3 allows for great simplification and reduced
specification

• Ephemeral Diffie-Hellman method enumeration, selection
and process doesn’t need to be in SIEPON.4 – TLS has it
covered

• For security reasons, implementations don’t like to
expose the premaster secret via API or other means. TLS
Export eliminates this issue and reduces specification in
SIEPON.4

• We don’t need to specify use of HMAC and HKDF in SIEPON.4 – it’s
all in TLS 1.3/RFC-5705

19

